## Homework 4

Deadline: Tuesday, March 23, at 11:59pm.
Submission: You need to submit the following files through MarkUs ${ }^{1}$ :

- Your solutions to Questions 1, 2, 3 as a PDF file, hw4_writeup.pdf.
- Your completed Python code for Question 2, as q2.py.

Late Submission: $10 \%$ of the marks will be deducted for each day late, up to a maximum of 3 days. After that, no submissions will be accepted.

Homeworks are individual work. See the webpage for detailed policies.

1. [1pt] Marginalization and Log-Sum-Exp. In this question you will learn how to compute log marginal probabilities in a numerically stable way. Suppose that you have a generative model $p(x, i)$ for labeled data ( $x, i$ ) where $i$ is a label that can be one of $0,1,2, \ldots, k$. Recall that the marginal probability $p(x)$ can be computed using the following formula:

$$
\begin{equation*}
p(x)=\sum_{i=0}^{k} p(x, i) \tag{0.1}
\end{equation*}
$$

When $x$ is a high-dimensional data point, it is typical for the marginal $p(x)$ and the joint $p(x, i)$ to be extremely small numbers that cannot be represented in floating point. For this reason, we usually report and compute with log probabilities.
If we want to compute $\log (p(x))$ only given access to $\log (p(x, i))$, then we can use what is called a log-sum-exp:

$$
\begin{equation*}
\log \left(\sum_{i=0}^{k} \exp \left(a_{i}\right)\right) \tag{0.2}
\end{equation*}
$$

where $a_{i} \in \mathbb{R}$ are real numbers. In our example, if $a_{i}=\log (p(x, i))$, then expression (0.2) would correspond to the $\log$ marginal probability $\log (p(x))$ of $x$.

Unfortunately, computing log-sum-exp naively can lead to numerical instabilities. The numerical instabilities in log-sum-exp are caused by problems that arise when trying to compute exponentials using floating point numbers. Two things can go wrong:
(a) Underflow. If $a[i]$ is very small, then $n p \cdot \exp (a[i])$ will evaluate to 0.
(b) Overflow. If a[i] is very large, then $n p \cdot \exp (a[i])$ will evaluate to inf.

The cause of underflow and overflow is that floating point numbers cannot represent numbers arbitrarily close to 0 nor arbitrarily large numbers.
(a) [1pt] We have provided code in q1.py with two implementations of log-sum-exp: a naive, numerically unstable implementation and a numerically stable one. Modify the elements of a so that logsumexp_unstable returns -inf, and modify the elements of b so that logsumexp_unstable returns inf. Report the two vectors, a and b, in your write-up.

[^0](b) Optional - not for marks Prove that our numerically stable implementation is correct by proving that
\[

$$
\begin{equation*}
\log \left(\sum_{i=0}^{k} \exp \left(a_{i}\right)\right)=\log \left(\sum_{i=0}^{k} \exp \left(a_{i}-\max _{j=0}^{k}\left\{a_{j}\right\}\right)\right)+\max _{j=0}^{k}\left\{a_{j}\right\} \tag{0.3}
\end{equation*}
$$

\]

Briefly explain why the numerically stable version is robust to underflow and overflow.
Report your answers to the above questions.
2. [3pts] Gaussian Discriminant Analysis. For this question you will build classifiers to label images of handwritten digits. Each image is 8 by 8 pixels and is represented as a vector of dimension 64 by listing all the pixel values in raster scan order. The images are grayscale and the pixel values are between 0 and 1 . The labels $y$ are $0,1,2, \ldots, 9$ corresponding to which character was written in the image. There are 700 training cases and 400 test cases for each digit; they can be found in a4digits.zip.
A skeleton (q2.py) is is provided for each question that you should use to structure your code. Starter code to help you load the data is provided (data.py). Note: the get_digits_by_label function in data.py returns the subset of digits that belong to a given class.
Using maximum likelihood, fit a set of 10 class-conditional Gaussians with a separate, full covariance matrix for each class. Remember that the conditional multivariate Gaussian probability density is given by,

$$
\begin{equation*}
p\left(\mathbf{x} \mid y=k, \boldsymbol{\mu}, \Sigma_{k}\right)=(2 \pi)^{-d / 2}\left|\Sigma_{k}\right|^{-1 / 2} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)^{T} \Sigma_{k}^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{k}\right)\right\} \tag{0.4}
\end{equation*}
$$

You should take $p(y=k)=\frac{1}{10}$. You will compute parameters $\mu_{k j}$ and $\Sigma_{k}$ for $k \in(0 \ldots 9), j \in$ (1...64). You should implement the covariance computation yourself (i.e. without the aid of 'np.cov'). Hint: To ensure numerical stability you may have to add a small multiple of the identity to each covariance matrix. For this assignment you should add 0.01I to each matrix.
(a) [1pt] Using the parameters you fit on the training set and Bayes rule, compute the average conditional $\log$-likelihood, i.e. $\frac{1}{N} \sum_{i=1}^{N} \log \left(p\left(y^{(i)} \mid \mathbf{x}^{(i)}, \theta\right)\right)$ on both the train and test set and report it. Hint: you will want to use the log-sum-exp we discussed in Question 1 to your code.
(b) $[\mathbf{1 p t}]$ Select the most likely posterior class for each training and test data point as your prediction, and report your accuracy on the train and test set.
(c) $[\mathbf{1 p t}]$ Compute the leading eigenvectors (largest eigenvalue) for each class covariance matrix (can use np.linalg.eig) and plot them side by side as 8 by 8 images.

Report your answers to the above questions, and submit your completed Python code for q2.py.
3. [3pts] Categorial Distribution. In this problem you will consider a Bayesian approach to modelling categorical outcomes. Let's consider fitting the categorical distribution, which is a discrete distribution over $K$ outcomes, which we'll number 1 through $K$. The probability of each category is explicitly represented with parameter $\theta_{k}$. For it to be a valid probability
distribution, we clearly need $\theta_{k} \geq 0$ and $\sum_{k} \theta_{k}=1$. We'll represent each observation $\mathbf{x}$ as a 1 -of- $K$ encoding, i.e, a vector where one of the entries is 1 and the rest are 0 . Under this model, the probability of an observation can be written in the following form:

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\prod_{k=1}^{K} \theta_{k}^{x_{k}}
$$

Suppose you observe a dataset,

$$
\mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}
$$

Denote the count for outcome $k$ as $N_{k}=\sum_{i=1}^{n} x_{k}^{(i)}$. Recall that each data point is in the 1-of- $K$ encoding, i.e., $x_{k}^{(i)}=1$ if the $i$ th datapoint represents an outcome $k$ and $x_{k}^{(i)}=0$ otherwise. In the previous assignment, you showed that the maximum likelihood estimate for the counts was:

$$
\hat{\theta}_{k}=\frac{N_{k}}{N}
$$

(a) $[\mathbf{1 p t}]$ For the prior, we'll use the Dirichlet distribution, which is defined over the set of probability vectors (i.e. vectors that are nonnegative and whose entries sum to 1 ). Its PDF is as follows:

$$
p(\boldsymbol{\theta}) \propto \theta_{1}^{a_{1}-1} \cdots \theta_{K}^{a_{k}-1}
$$

What is the probability distribution of the posterior distribution $p(\boldsymbol{\theta} \mid \mathcal{D})$ ?
(b) [1pt] Still assuming the Dirichlet prior distribution, determine the MAP estimate of the parameter vector $\boldsymbol{\theta}$. For this question, you may assume each $a_{k}>1$.
(c) $[\mathbf{1 p t s}]$ Now, suppose that your friend said that they had a hidden $N+1$ st outcome, $\mathbf{x}^{(N+1)}$, drawn from the same distribution as the previous $N$ outcomes. Your friend does not want to reveal the value of $\mathbf{x}^{(N+1)}$ to you. So, you want to use your Bayesian model to predict what you think $\mathbf{x}^{(N+1)}$ is likely to be. The "proper" Bayesian predictor is the so-called posterior predictive distribution:

$$
p\left(\mathbf{x}^{(N+1)} \mid \mathcal{D}\right)=\int p\left(\mathbf{x}^{(N+1)} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta} \mid \mathcal{D}) d \boldsymbol{\theta}
$$

What is the probability that the $N+1$ outcome was $k$, i.e., the probability that $x_{k}^{(N+1)}=$ 1, under your posterior predictive distribution? Hint: A useful fact is that if $\boldsymbol{\theta} \sim$ Dirichlet $\left(a_{1}, \ldots, a_{K}\right)$, then

$$
\mathbb{E}\left[\theta_{k}\right]=\frac{a_{k}}{\sum_{k^{\prime}} a_{k^{\prime}}}
$$

Report your answers to the above questions.


[^0]:    ${ }^{1}$ https://markus.teach.cs.toronto.edu/csc2515-2021-01

