CSC2515 Lecture 6:

Convolutional Networks

David Duvenaud

Based on Materials from Roger Grosse, University of Toronto
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Announcements

@ Midterm grades this weekend
@ Drop date March 1st
@ HW3 released this weekend

) CSC2515 Lec6 2/64



Neural Nets for Visual Object Recognition

@ People are very good at recognizing shapes

» Intrinsically difficult, computers are bad at it

@ Why is it difficult?
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Why is it a Problem?

@ Difficult scene conditions

A

V. g
object pose

[From: Grauman & Leibe]
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Why is it a Problem?

@ Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
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Neural Nets for Object Recognition

@ People are very good at recognizing object
» Intrinsically difficult, computers are bad at it
@ Some reasons why it is difficult:

» Segmentation: Real scenes are cluttered

» Invariances: We are very good at ignoring all sorts of variations that do
not affect class

» Deformations: Natural object classes allow variations (faces, letters,
chairs)

» A huge amount of computation is required
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How to Deal with Large Input Spaces

@ How can we apply neural nets to images?
@ Images can have millions of pixels, i.e., x is very high dimensional

@ How many parameters do | have?
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How to Deal with Large Input Spaces

@ How can we apply neural nets to images?

@ Images can have millions of pixels, i.e., x is very high dimensional
@ How many parameters do | have?

@ Prohibitive to have fully-connected layers

@ What can we do?

@ We can use a locally connected layer
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Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., “
face recognition). Ranzatoll3
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When Will this Work?

When Will this Work?

@ This is good when the input is (roughly) registered
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]

) CSC2515 Lec6 11/64



General Images

@ The object can be anywhere

[Slide: Y. Zhu]
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General Images

@ The object can be anywhere

[Slide: Y. Zhu]

) CSC2515 Lec6 13 /64



The Invariance Problem

@ Our perceptual systems are very good at dealing with invariances

» translation, rotation, scaling
» deformation, contrast, lighting

@ We are so good at this that it's hard to appreciate how difficult it is

> It's one of the main difficulties in making computers perceive
» We still don't have generally accepted solutions
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Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g., .
face recognition). Ranzatoll3
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The replicated feature approach

@ Adopt approach apparently used in
monkey visual systems
The red connections all

have the same weight. @ Use many different copies of the same

feature detector.

O O » Copies have slightly different

positions.
» Could also replicate across scale and

\ O orientation.
| t\

l — > Tricky and expensive

—_—

» Replication reduces the number of
free parameters to be learned.

@ Use several different feature types, each
5 with its own replicated pool of detectors.

» Allows each patch of image to be
represented in several ways.
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Convolutional Neural Net

@ lIdea: statistics are similar at different locations (Lecun 1998)

@ Connect each hidden unit to a small input patch and share the weight across
space

@ This is called a convolution layer and the network is a convolutional network

Share the same parameters across
different locations (assuming input is
stationary):

Convolutions with learned kernels

36
Hanzaton
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Convolution

@ Convolution layers are named after the convolution operation.

o If a and b are two arrays,

(a * b)t = Z aTbt_T.
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Convolution

Method 1: translate-and-scale

) CSC2515 Lec6 19/64



Convolution

Method 2: flip-and-filter

i 112
T« il =
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Convolution

Convolution can also be viewed as matrix multiplication:

2
-1

1
1
2 1
1 1
2

(2,-1,1) % (1,1,2) =

N ==

Aside: This is how convolution is typically implemented. (More efficient
than the fast Fourier transform (FFT) for modern conv nets on GPUs!)
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Convolution

Some properties of convolution:

o Commutativity
axb=>bxa

o Linearity
ax(ANb+ Axc)=Xaxb+ laxc
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2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If A and B are two 2-D arrays, then:

(A * B),J = ZzAstBi—s,j—t-
s t
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2-D Convolution

Method 1: Translate-and-Scale
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2-D Convolution

Method 2: Flip-and-Filter

1131 T2
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2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this filter do?

0/1]0
>l< 4
0|10

T C) CSC2515 Lec6 26 /64



2-D Convolution

The thing we convolve by is called a kernel, or filter.

What does this filter do?

0/1]0
>l< 4
0|10
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2-D Convolution

What does this filter do?

0(-1|0
 [-1]8]-1
0|-1]0
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2-D Convolution

What does this filter do?

0(-1|0
 [-1]8]-1
0|-1]0

Intro ML (UofT) CSC2515 Lec6 27 /64



2-D Convolution

What does this filter do?

0|-1]0
 [-1]4]
0|-1]0
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2-D Convolution

What does this filter do?

0|-1]0
 [-1]4]
0|-1]0
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2-D Convolution

What does this filter do?

0 -1
%k 2|02
1101
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2-D Convolution

What does this filter do?

0 -1
%k 2|02
1101
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Convolutional Layer

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
Ranzaton
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Convolutional Layer

32
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Figure: Left: CNN, right: Each neuron computes a linear and activation function

Hyperparameters of a convolutional layer:

@ The number of filters (controls the depth of the output volume)

@ The stride: how many units apart do we apply a filter spatially (this
controls the spatial size of the output volume)

@ The size w x h of the filters

Intro ML (UofT)

[http://cs231n.github.io/convolutional-networks /]
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
Ranzaton
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Pooling Options

@ Max Pooling: return the maximal argument
@ Average Pooling: return the average of the arguments

@ Other types of pooling exist.
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224x224x64
112x112x64 Single depth slice
pool
R W1 111]2)4
max pool with 2x2 filters
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Figure: Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

@ The spatial extent F

@ The stride

[http://cs231n.github.io/convolutional-networks/]
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Backpropagation with Weight Constraints

@ The backprop procedure from last lecture can be applied directly to conv
nets.

@ This is covered in csc2516.

@ As a user, you don't need to worry about the details, since they're handled
by automatic differentiation packages.
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MNIST Dataset

@ MNIST dataset of handwritten digits

>

>

>

Categories: 10 digit classes
Source: Scans of handwritten zip codes from envelopes
Size: 60,000 training images and 10,000 test images, grayscale, of size
28 x 28
Normalization: centered within in the image, scaled to a consistent
size

> The assumption is that the digit recognizer would be part of a larger

pipeline that segments and normalizes images.

@ In 1998, Yann LeCun and colleagues built a conv net called LeNet
which was able to classify digits with 98.9% test accuracy.

> It was good enough to be used in a system for automatically reading

numbers on checks.
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LeNet

Here's the LeNet architecture, which was applied to handwritten digit
recognition on MNIST in 1998:

C3: f. maps 16@10x10

C1: feature maps S4: {. maps 16@5x5

INPUT 6@28x28

32x32

| 1 | Full conﬁection Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Intro ML (UofT)
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Size of a Conv Net

@ Ways to measure the size of a network:

» Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).
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Size of a Conv Net

@ Ways to measure the size of a network:

» Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

» Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.
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Size of a Conv Net

@ Ways to measure the size of a network:

» Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

» Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

» Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).
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Size of a Conv Net

@ Ways to measure the size of a network:

» Number of units. This is important because the activations need to
be stored in memory during training (i.e. backprop).

» Number of weights. This is important because the weights need to
be stored in memory, and because the number of parameters
determines the amount of overfitting.

» Number of connections. This is important because there are
approximately 3 add-multiply operations per connection (1 for the
forward pass, 2 for the backward pass).

@ We saw that a fully connected layer with M input units and N output
units has MN connections and MN weights.

@ The story for conv nets is more complicated.
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

width W

fully connected layer convolution layer
# output units
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

width W

fully connected layer convolution layer
# output units WHI WHI

T C) CSC2515 Lec6 39 /64



Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

width W
fully connected layer convolution layer

# output units WHI WHI
# weights
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

width W
fully connected layer convolution layer

# output units WHI WHI
# weights W2H?1J
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

width W
fully connected layer convolution layer

# output units WHI WHI
# weights W2H?1J K21J
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

Jinputmaps T |

width W

fully connected layer convolution layer
# output units WHI WHI
# weights W2H?1J K21J
# connections
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

.....

Jinputmaps T |

fully connected layer convolution layer

# output units WHI WHI
# weights W2H21J K21J
# connections W2H?1J
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Size of a Conv Net

I output maps I ‘

kernel dimension K

height H

.....

Jinputmaps T |

fully connected layer convolution layer

# output units WHI WHI
# weights W2H21J K21J
# connections W2H?1J WHK?1J
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Size of a Conv Net

Sizes of layers in LeNet:

Layer Type # units | # connections | # weights
C1 convolution 4704 117,600 150
S2 pooling 1176 4704 0
C3 convolution 1600 240,000 2400
S4 pooling 400 1600 0
F5 fully connected 120 48,000 48,000
F6 fully connected 84 10,080 10,080

output | fully connected 10 840 840

Conclusions?
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Size of a Conv Net

@ Rules of thumb:

» Most of the units and connections are in the convolution layers.
» Most of the weights are in the fully connected layers.

@ If you try to make layers larger, you'll run up against various resource
limitations (i.e. computation time, memory)

» Conv nets have gotten a LOT larger since 1998!
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ImageNet

ImageNet is the modern object recognition benchmark dataset. It was

introduced in 2009, and has led to amazing progress in object recognition
since then.

ILSVRC

A

Egyptiancat  Persian cat Siamese cat tabby

Ny~
dalmatian

Intro ML (UofT)
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@ Used for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC),
an annual benchmark competition for object recognition algorithms

@ Design decisions

» Categories: Taken from a lexical database called WordNet

> WordNet consists of “synsets”, or sets of synonymous words

> They tried to use as many of these as possible; almost 22,000 as of
2010

> Of these, they chose the 1000 most common for the ILSVRC
> The categories are really specific, e.g. hundreds of kinds of dogs

» Size: 1.2 million full-sized images for the ILSVRC
» Source: Results from image search engines, hand-labeled by
Mechanical Turkers

> Labeling such specific categories was challenging; annotators had to be
given the WordNet hierarchy, Wikipedia, etc.

» Normalization: none, although the contestants are free to do
preprocessing
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ImageNet

Images and object categories vary on
a lot of dimensions

Russakovsky et al.
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Size on disk:

MNIST ImageNet
60 MB 50 GB
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@ AlexNet, 2012. 8 weight layers. 16.4% top-5 error (i.e. the network gets 5 tries to

guess the right category).

192

58 204 2048 \dense

dense dense|

1000

Max 128 Max
pooling pooling

128 Max

pooling 204 2048

(Krizhevsky et al., 2012)

@ The two processing pathways correspond to 2 GPUs. (At the time, the network

couldn’t fit on one GPU.)

@ AlexNet's stunning performance on the ILSVRC is what set off the deep learning

boom of the last 6 years.

Intro ML (UofT) CSC2515 Lec6
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Inception

Inception, 2014. (“We need to
go deeper!")

22 weight layers

Fully convolutional (no fully
connected layers)

Convolutions are broken down
into a bunch of smaller
convolutions

6.6% test error on ImageNet

(Szegedy et al., 2014)
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@ They were really aggressive about cutting the number of parameters.
» Motivation: train the network on a large cluster, run it on a cell phone
> Memory at test time is the big constraint.
> Having lots of units is OK, since the activations only need to be stored
at training time (for backpropagation).
> Parameters need to be stored both at training and test time, so these
are the memory bottleneck.
» How they did it
> No fully connected layers (remember, these have most of the weights)
> Break down convolutions into multiple smaller convolutions (since this
requires fewer parameters total)
> Inception has “only” 2 million parameters, compared with 60 million
for AlexNet
» This turned out to improve generalization as well. (Overfitting can still
be a problem, even with over a million images!)
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150 Layers!

34dayerplain  34-layer residual

@ Networks are now at 150 layers

They use a skip connections with special form

In fact, they don’t fit on this screen

af [x] 1% 2| |z [z

Amazing performance!

&

il

A lot of “mistakes” are due to wrong ground-truth
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weight layer

identity
x

F(x)

weight layer

HX)=F@x) +x @

[He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition. arXiv:1512.03385, 2016]

Intro ML (UofT) Ccsc Lec6




Results: Object Classification

Revolution of Depth

\ 152 layers

22 Iayers 19 Iayers
\ 6.7
3.57 I_ il I 8 layers 8 layers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]
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Results: Object Detection

person : 0.998 §

N

- R pe“rson :0.987

o9 )

dining table : 0.879 ca_kﬁL

.:' Al.n~hﬂ
book : 0.830) !-‘

e

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.

arXiv:1512.03385, 2016]
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Results: Object Detection

person : 0.989 ‘
e refrigerator : 0.979

!b'; ol

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
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Object Detection

person :0.910 —‘j person : 0.998

person 0.998 umbrella : 0.910

Slide: R. Liao, Paper: [He, K., Zhang, X., Ren, S. and Sun, J., 2015. Deep Residual Learning for Image Recognition.
arXiv:1512.03385, 2016]

Intro ML (UofT) CSC2515 Lec6 53 /64



What Do Networks Learn?

@ Recall: we can understand what first-layer features are doing by
visualizing the weight matrices.

(MNIST)

Fully connected

@ Higher-level weight matrices are hard to interpret.
@ The better the input matches these weights, the more the feature
activates.

» Obvious generalization: visualize higher-level features by seeing what
inputs activate them.
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What Do Networks Learn?

@ One way to formalize: pick the images and locations in the training
set which activate a unit most strongly.

@ Here's the visualization for layer 1:
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What Do Networks Learn?

o Layer 3:

/

]
B
]
B
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What Do Networks Learn?

o Layer 4:
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What Do Networks Learn?

o Layer 5:
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What Do Networks Learn?

@ Higher layers seem to pick up more abstract, high-level information.
@ Problems?
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What Do Networks Learn?

@ Higher layers seem to pick up more abstract, high-level information.
@ Problems?

» Can't tell what the unit is actually responding to in the image.
» We may read too much into the results, e.g. a unit may detect red, and
the images that maximize its activation will all be stop signs.
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What Do Networks Learn?

@ Higher layers seem to pick up more abstract, high-level information.
@ Problems?

» Can't tell what the unit is actually responding to in the image.
» We may read too much into the results, e.g. a unit may detect red, and
the images that maximize its activation will all be stop signs.

@ Can use input gradients to diagnose what the unit is responding to.
» Optimize an image from scratch to increase a unit's activation
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Optimizing the Image

@ Recall the computation graph:

w w2
b b3

e From this graph, you could compute 9L/0x, but we never made use
of this.
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Optimizing the Image

@ Can do gradient ascent on an image to maximize the activation of a
given neuron.

@ Requires a few tricks to make this work; see
https://distill.pub/2017/feature-visualization/

Starting from random
noise, we optimize an
image to activate a
particular neuron (layer
mixed4a, unit 11).

Step 0 Step 4 Step 48 Step 2048

Intro ML (UofT)



https://distill.pub/2017/feature-visualization/

Optimizing the Image

Dataset Examples show
us what neurons respond
toin practice

Optimization isolates
the causes of behavior
from mere correlations. A
neuron may not be
detecting what you
initially thought.

Baseball—or stripes? Animal faces—or snouts? Clouds—or fluffiness? Buildings—or sky?
mixedda, Unit 6 mixedda, Unit 240 mixedda, Unit 453 mixedda, Unit 492
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Optimizing the Image

@ Higher layers in the network often learn higher-level, more
interpretable representations

3

Edges (layer conv2d0) Textures (layer mixed3a) Patterns (layer mixed4a)

https://distill.pub/2017/feature-visualization/
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https://distill.pub/2017/feature-visualization/

Optimizing the Image

o Higher layers in the network often learn higher-level, more
interpretable representations

https://distill.pub/2017/feature-visualization/
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