CSC 311: Introduction to Machine Learning

Matrix Factorizations & Recommender Systems

David Duvenaud

Based on slides by Richard Zemel & Murat A. Erdogdu
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Project Questions?

Deadline: April 16th

Grades for June graduands needed by April 20

Office hours + proposal review for feedback

Free-form project ideas:

» Push limits of existing model class / demos (e.g. CLIP-GLaSS)
» Apply ML to your research area (or lit search)

Intro ML (UofT) CSC2515 2 /40



Overview

@ Recommender systems

@ Movie recommendation example

@ PCA as a matrix factorization

@ Matrix completion task

o Alternating Least Square method (ALS)

Gradient descent

Intro ML (UofT) CSC2515 3 /40



Recommender systems: Why?

o EMYouTube™ 400 hours of video are uploaded to YouTube
every minute

o IEIUEFAUIREN 353 million products and 310 million users

e Spotify’
° 83 million paying subscribers and streams about

35 million songs

Who cares about all these videos, products and songs? People may
care only about a few — Personalization: Connect users with content
they may use/enjoy.

Recommender systems suggest items of interest and enjoyment to
people based on their preferences
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Some recommender systems in action

<« C & hitps://www.amazon.ca/?ref =nav_signin& * G s * e 0 EH® CHS e
Apps H Bookmarks () Version Control wi.. § The latest Sci-Hu.. W Daylight Theory: S.. [J A Guide to Creatin. How doss physics... e Griled Steak Taco... 5 arXiv:0707.2071v2. »
—————

Inspired by your browsing history see more

Your recently viewed items and featured recommendations
Inspired by your browsing history Page 10f8

Pixel 2XL Case, Google ~ Pixel 2XL Case, Google ~ Google Pixel 2 XL Screen  Pixel 2 XL Case, Google ~ VicTsing M UGREEN Active Micro AmazonBasics Nylon
Pixel 2 XL Case, Spigen Pixel 2 XL Case, Spigen Protector [Not Glass][2-  Pixel 2 XL Case, Spigen (Thunderbolt Port HDMI to HDMI VGA Video  Braided USB A to
Neo Hybrid - Flexible Inner  Thin Fit - Premium Matte  Pack], IQ Shield LiQuidSkin  Rugged Armor - Resilient  Compatible) to Converter Adapterwith  Lightning Compatible
TPU and Reinforced.. Finish Coating for... Full Coverage Screen Carbon Fiber Design... HDMI/DVI/VGA Male to...  3.5mm Audio Jackand...  Cable - Apple MF...
Al Ardryy 134 FR vy 143 Protector for Google... HA R 325 R vr 306 Ry 64 P e dr s 402
CON$ 2099 prime CON$ 15.99 prime CDN$ 27.16 CDN$ 15.99 vprime CDN$ 16.99 vprime CON$ 25.49 prime CON$ 1299 prime

Ideally recommendations should combine global and seasonal interests, look at
your history if available, should adapt with time, be coherent and diverse, etc.
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Some recommender systems in action
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The Netflix problem

User | Movie Rating

& Thor * Yok kX
& Chained * Kk kK
& Frozen * % ok 3 X
Chained * kK kK&
Bambi * % % % %
&) Titanic * % Kk K %
© Goodfellas | % % % % %
© Dumbo * Kk Kk K %
o Twilight * Kk K ok K
@ Frozen * %k k Kk K
@ Tangled * % K A %

Movie recommendation: Users watch movies and rate them out of 5.

Because users only rate a few items, one would like to infer their
preference for unrated items
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Matrix completion problem

Matrix completion problem: Transform the table into a IV users by M movies
matrix R

Rating matrix

@ Data: Users rate some movies.

? ? 7 ? 1 ?
Ruser,movie~ Very sparse
7 ? 7 ? ? ? . . . .
@ Task: Finding missing data, e.g.
B s for recommending new movies
to users. Fill in the question
7 ? 7 ? ?
marks
? ? ? ? ? ?
Neutral ? ? ? ? ? ? ? 7 1
> > K oy Y >
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Approach: Matrix factorization methods
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Netflix Prize
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PCA as a Matrix Factorization

o Recall PCA: project data onto a low-dimensional subspace defined
by the top eigenvalues of the data covariance

o We saw that PCA could be viewed as a linear autoencoder, which
lets us generalize to nonlinear autoencoders

e Today we consider another generalization, matrix factorizations

» view PCA as a matrix factorization problem

» extend to matrix completion, where the data matrix is only
partially observed

» extend to other matrix factorization models, which place different
kinds of structure on the factors
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PCA as Matrix Factorization

o Recall PCA: each input vector x e RP is approximated as
o+ Uz(l), ' ‘ ‘
@ . ¢ (@)

X =+ Uz

where f1 = % > x is the data mean, U € RP*F is the orthogonal

basis for the principal subspace, and 2" € R is the code vector,
(i) D . _(i), . .
and X'’ € R™ is x /s reconstruction or approximation.

@ Assume that the data is centered: fi = 0. Then, the approximation
looks like

NONENONISNG)
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PCA as Matrix Factorization

e PCA(on centered data): input vector x s approximated as Uz
<D < ug®
@ Write this in matrix form, we have X = ZU" where X and Z are

matrices with one row per data point

(]! [«
(2)7T (2)1T

X=| XD | er™P qng z=| 271 | gk
[XU{’)]T [Z(]\})]T

e How to enforce X = ZUT or measure difference between them?
o Recall that the Frobenius norm of a matrix Y is defined as

2 T2 2 )12
IYllr =Y [ = § Yij = E Iy 1%,

o : 0]
o Writing the squared error in matrix form

N

) )12 T2 T T2
S Ix -2 = X - zUT |7 = IXT - UZT |7
i=1
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PCA as Matrix Factorization
e So PCA is approximating X = ZUT, or equivalently x"~Uz".
XT U YA

_Nv
D D

one code
vector

Q

_ N — —K—
one principal
component

e Based on the sizes of the matrices, this is a rank- K approximation.

e Since U was chosen to minimize reconstruction error, this is the
. . . . T T2
optimal rank-K approximation, in terms of error ||X ' —UZ ||z.
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Supplement: Singular-Value Decomposition (SVD)

This has a close relationship to the Singular Value Decomposition
(SVD) of X which is a matrix factorization technique. Consider an
N x D matrix X € RV*” with SVD

X =QSU’
Properties:

e Q, S, and U’ provide a real-valued matrix factorization of X.

e Q is a N X D matrix with orthonormal columns, QTQ =1p,
where Ip is the D X D identity matrix.

o U is an orthonormal D X D matrix, U' =UL

e Sis a D x D diagonal matrix, with non-negative singular values,
$1,89,...,Sp, on the diagonal, where the singular values are
conventionally ordered from largest to smallest.

Note that standard SVD notation is X = UDV'. We are using X = QSU-r
for notational convenience.
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PCA as matrix factorization of X

We have established that SVD provided a matrix factorization which
we can interpret as a PCA. Recall

- = e oc NS
= + + + + |y + + +
NN N N R §oRR

X =MW+ z1Uu1 + 22U + 23Uz + ...

where the vectors u; are the principal components of the data matrix
X (the latent factors).
We can do the same for our ratings matrix R. Rating of movie

@ = average user+z;comedy user+zydrama user+zsaction user+. .

These latent factors are idealized, the real latent factors do not
necessarily reveal these semantic concepts so clearly.
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Matrix Completion

o We just saw that PCA gives the optimal low-rank matrix
factorization.

o Two ways to generalize this:
» 1) Consider when X is only partially observed.
> A sparse 1000 X 1000 matrix with 50,000 observations (only 5%
observed).
» A rank 5 approximation requires only 10,000 parameters, so it’s
reasonable to fit this.
» Unfortunately, no closed form solution.

» 2) Impose structure on the factors. We can get lots of interesting
models this way.
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The Netflix problem

Movie recommendation: Users watch movies and rate them as good or

bad.

User | Movie Rating

& Thor * % K %
& Chained * ok %
-3 Frozen * Kk Kk %
Chained * ok ok Kk %
= Bambi * Kk Kk K &
© Titanic * %k ok k%
(@] Goodfellas | % % % % *
@] Dumbo * % %k Kk Kk
5] Twilight * ok % %
) Frozen * % ok Kk Kk
2 Tangled * % e %

Because users only rate a few items, one would like to infer their

preference for unrated items
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Matrix completion problem

Matrix completion problem: Transform the table into a IV users by M movies
matrix R

Rating matrix

@ Data: Users rate some movies.
Rusenmovie- Very sparse

7 ? ? ? 1 ?

@ Task: Finding missing data, e.g.
T for recommending new movies
to users. Fill in the question
marks

o Algorithms: Alternating Least
Newrall 22777777 Square method, Gradient

& Descent, Non-negative Matrix
Factorization, low rank matrix
Completion, etc.
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Latent factor models

@ In our current setting, latent factor models attempt to explain the
ratings by characterizing both movies and users on a number of
factors K inferred from the ratings patterns.

e That is, we seek representations for movies and users as vectors in
R* that can ultimately be translated to ratings.

e For simplicity, we can associate these factors (i.e. the dimensions
of the vectors) with idealized concepts like
» comedy
» drama
» action
» But also uninterpretable dimensions

Can we use the sparse ratings matrix R to find these latent factors
automatically?
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Approach: Matrix factorization methods
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Interpreting Factors
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Alternating least squares

@ Let the representation of user n in the K-dimensional space be u,, and
the representation of movie m be z,,

@ Assume tThe rating user n gives to movie m is given by a dot product:

@ In matrix form, if:
. T
U= : and Z =|z1 ... zZp

then: R =~ UZ'

@ This is a matrix factorization problem!
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Cost for Matrix Factorization for Recommender Systems

o Recall PCA: To enforce X' =~ UZT, we minimized
. T T2 T 2
min X —UZ || = izj(l‘ji - u; z;)

where u; and z; are the i-th rows of matrices U and Z,
respectively.

e How do we enforce R ~ UZ '
> Try
. T \2
1611%1 Z(Rij —u; Zj)
2,7

» Most entries of R are missing!
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Alternating least squares

@ Let O = {(n,m): entry (n,m) of matrix R is observed}

@ Using the squared error loss, a matrix factorization corresponds to
solving

. 1 T 2
9 an — Un‘m
wpz 2 (Fon = amn)

@ The objective is non-convex in U and Z and in fact it’s generally
NP-hard to minimize the above cost function.

@ As a function of either U or Z individually, the problem is convex and
easy to optimize. We can use coordinate descent, just like with K-means
and mixture models!

Alternating Least Squares (ALS): fix Z and optimize U, followed by fix
U and optimize Z, and so on until convergence.
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Alternating least squares

ALS for Matrix Completion algorithm
1. Initialize U and Z randomly
2. repeat until convergence

3. forn=1,..,N do

T
4. u, = (Zm:(n,m)EO zmzm) Zm:(n,m)eo anzm
5. form=1,..,M do

. Ty 1
6. Zm = (Zn:(n,m)eo unun) Zn:(n,m)EO anun
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Gradient descent method

@ We can also do full gradient descent for matrix completion.

@ Minimize f(U,Z) with GD. Both U, Z are variables. Gradient descent
step:

[Izj] - [IZJ} —a Vv f(U,2) (1)

@ Computation of the gradient term per iteration is expensive if all the
index pairs in the ratings matrix are considered and R is large (e.g.
Netflix).
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Stochastic gradient descent method

Stochastic gradient descent for matrix completion (recall SGD from lecture

2
8). Attempt to minimize f(U,Z) = % Z(n,m)eo (an - ulzm) . For a

randomly chosen observed pair (n,m) in R, the SGD update:
T
[un}(_[un]_a (an—uq_zm)zm @
Zm Zm (an -u, zm) u,

1. Initialize U and Z

Algorithm:

2. repeat until “convergence”

3. Randomly select a pair (n,m) € O among observed elements of R
4. u, hun—a(an—usz)zm

T
5. Zyy < 2y — @ (RnnL —u, ZT}'L) u,
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K-Means

o It’s possible to view K-means as a matrix factorization.
o Stack 1-of-K vectors r; for assignments into a N X K matrix R,
and stack the cluster centers my, into a matrix K X D matrix M.
e “Reconstruction” of the data (replace each point with its cluster
center) is given by RM.
X

r;

R

o K-means distortion function in matrix form:
N K

n n 2 2
Py - x™M )2 = 1X - RM||%
n=1k=1
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K-Means

e Can sort by cluster for visualization:

~
~
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Co-clustering

We can take this a step further.

Idea: feature dimensions can be redundant, and some feature
dimensions cluster together.

o Co-clustering clusters both the rows and columns of a data matrix,
giving a block structure.

o We can represent this as the indicator matrix for rows, times the
matrix of means for each block, times the indicator matrix for

columns
u B [ |
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Sparse Coding

o Efficient coding hypothesis: the structure of our visual system is
adapted to represent the visual world in an efficient way

» E.g., be able to represent sensory signals with only a small fraction
of neurons having to fire (e.g. to save energy)

@ Olshausen and Field fit a sparse coding model to natural images to
try to determine what’s the most efficient representation.

@ They didn’t encode anything specific about the brain into their
model, but the learned representations bore a striking resemblance
to the representations in the primary visual cortex
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Sparse Coding

e This algorithm works on small (e.g. 20 X 20) image patches, which
we reshape into vectors (i.e. ignore the spatial structure)

e Suppose we have a dictionary of basis functions {ak}le which can
be combined to model each patch

e Each patch is approximated as a linear combination of a small
number of basis functions:

K

X = Z Spap = As
k=1

e This is an overcomplete representation, in that typically K > D
for sparse coding problems (e.g. more basis functions than pixels)

@ The requirement that s is sparse makes things interesting
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Sparse Coding

%,\,()()x. +()X><' +0.4 XE

a33 375

K

X = Z sgpap = As
k=1

Since we use only a few basis functions, s is a sparse vector.
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Sparse Coding

e We'd like choose s to accurately reconstruct the image, x = As
but encourage sparsity in s.

What cost function should we use?

Inference in the sparse coding model:

. 2
min [x - As||” + 8llsl

Here, 3 is a hyperparameter that trades off reconstruction error
Vs. sparsity.

@ There are efficient algorithms for minimizing this cost function
(beyond the scope of this class)
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Sparse Coding: Learning the Dictionary

@ We can learn a dictionary by optimizing both A and {si}f\il to
trade off reconstruction error and sparsity

N
i Z 1= = As;||” + Bllsilly

subject to ||a;§||2 <1 for all k

e Why is the normalization constraint on a; needed?

@ Reconstruction term can be written in matrix form as
2 )
[|X — AS||7, where S combines the s; as columns

e Can fit using an alternating minimization scheme over A and S,
just like K-means, EM, low-rank matrix completion, etc.
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Sparse Coding: Learning the Dictionary

e Basis functions learned from natural images:
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Sparse Coding: Learning the Dictionary

o The sparse components are oriented edges, similar to what a
neural networks learn

@ But the learned dictionary is much more diverse than the
first-layer neural net representations: tiles the space of location,
frequency, and orientation in an efficient way
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Sparse Coding

Applying sparse coding to speech signals:

fundamental frequency formants
and overtones

example speech spectrogram (log amplitude)

plosives fricatives

(Grosse et al., 2007, “Shift-invariant sparse coding for audio classification”)
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Summary

@ PCA can be viewed as fitting the optimal low-rank approximation
to a data matrix.

e Matrix completion is the setting where the data matrix is only
partially observed

» Solve using ALS, an alternating procedure analogous to EM

e PCA, K-means, co-clustering, sparse coding, and lots of other
interesting models can be viewed as matrix factorizations, with
different kinds of structure imposed on the factors.
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