CSC 2515 Lecture 2: Decision Trees and Ensembles

David Duvenaud
Based on Materials from Roger Grosse, University of Toronto

Overview

- Decision Trees
- Simple but powerful learning algorithm
- One of the most widely used learning algorithms in Kaggle competitions
- Lets us introduce ensembles, a key idea in ML more broadly
- Useful information theoretic concepts (entropy, mutual information, etc.)

Decision Trees

Decision Trees

Test example

width $>6.5 \mathrm{~cm}$?

height $>9.5 \mathrm{~cm}$?
height $>6.0 \mathrm{~cm}$?

Decision Trees

- Decision trees make predictions by recursively splitting on different attributes according to a tree structure.

Example with Discrete Inputs

- What if the attributes are discrete?

Example	Input Attributes										Goal WillWait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
x_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=N_{o}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y e s$
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y e s$
x_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_{5}=N_{0}$
x_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y e s$
x_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$	Yes	Yes	Thai	0-10	$y_{8}=Y$ Yes
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{0}$
x_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{o}$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Attributes:

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, $\$ \$, \$ \$ \$$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

Decision Tree: Example with Discrete Inputs

- A tree to decide whether to wait (T) or not (F)

Decision Trees

- Internal nodes test attributes
- Branching is determined by attribute value
- Leaf nodes are outputs (predictions)

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

[Slide credit: S. Russell]

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

- Classification tree:
- discrete output
- leaf value y^{m} typically set to the most common value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$
[Slide credit: S. Russell]

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

- Classification tree:
- discrete output
- leaf value y^{m} typically set to the most common value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$
- Regression tree:
- continuous output
- leaf value y^{m} typically set to the mean value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$
[Slide credit: S. Russell]

Decision Tree: Classification and Regression

- Each path from root to a leaf defines a region R_{m} of input space
- Let $\left\{\left(x^{\left(m_{1}\right)}, t^{\left(m_{1}\right)}\right), \ldots,\left(x^{\left(m_{k}\right)}, t^{\left(m_{k}\right)}\right)\right\}$ be the training examples that fall into R_{m}

- Classification tree:
- discrete output
- leaf value y^{m} typically set to the most common value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$
- Regression tree:
- continuous output
- leaf value y^{m} typically set to the mean value in $\left\{t^{\left(m_{1}\right)}, \ldots, t^{\left(m_{k}\right)}\right\}$

Note: We will focus on classification
[Slide credit: S. Russell]

Expressiveness

- Discrete-input, discrete-output case:
- Decision trees can express any function of the input attributes
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

[Slide credit: S. Russell]

Expressiveness

- Discrete-input, discrete-output case:
- Decision trees can express any function of the input attributes
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Continuous-input, continuous-output case:
- Can approximate any function arbitrarily closely
- Trivially, there is a consistent decision tree for any training set w / one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
[Slide credit: S. Russell]

How do we Learn a DecisionTree?

- How do we construct a useful decision tree?

Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil \& Rivest'76]

Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil \& Rivest'76]

- Resort to a greedy heuristic:
- Start from an empty decision tree
- Split on the "best" attribute
- Recurse

Learning Decision Trees

Learning the simplest (smallest) decision tree is an NP complete problem [if you are interested, check: Hyafil \& Rivest'76]

- Resort to a greedy heuristic:
- Start from an empty decision tree
- Split on the "best" attribute
- Recurse
- Which attribute is the "best"?
- Choose based on accuracy?

Choosing a Good Split

- Why isn't accuracy a good measure?

- Is this split good?

Choosing a Good Split

- Why isn't accuracy a good measure?

- Is this split good? Zero accuracy gain.

Choosing a Good Split

- Why isn't accuracy a good measure?

- Is this split good? Zero accuracy gain.
- Instead, we will use techniques from information theory

Idea: Use counts at leaves to define probability distributions, so we can measure uncertainty

Choosing a Good Split

- Which attribute is better to split on, X_{1} or X_{2} ?
- Deterministic: good (all are true or false; just one class in the leaf)
- Uniform distribution: bad (all classes in leaf equally probable)
- What about distributons in between?

Note: Let's take a slight detour and remember concepts from information theory
[Slide credit: D. Sontag]

We Flip Two Different Coins

Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$?

We Flip Two Different Coins

Sequence 1:
$000100000000000100 \ldots$?
Sequence 2:
$010101110100110101 \ldots$?

Quantifying Uncertainty

Entropy is a measure of expected "surprise":

$$
H(X)=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

- Measures the information content of each observation
- Unit = bits
- A fair coin flip has 1 bit of entropy

Quantifying Uncertainty

$$
H(X)=-\sum_{x \in X} p(x) \log _{2} p(x)
$$

Entropy

- "High Entropy":
- Variable has a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable
[Slide credit: Vibhav Gogate]

Entropy

- "High Entropy":
- Variable has a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable
- "Low Entropy"
- Distribution of variable has many peaks and valleys
- Histogram has many lows and highs
- Values sampled from it are more predictable
[Slide credit: Vibhav Gogate]

Entropy of a Joint Distribution

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

$$
\begin{aligned}
H(X, Y) & =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(x, y) \\
& =-\frac{24}{100} \log _{2} \frac{24}{100}-\frac{1}{100} \log _{2} \frac{1}{100}-\frac{25}{100} \log _{2} \frac{25}{100}-\frac{50}{100} \log _{2} \frac{50}{100} \\
& \approx 1.56 \text { bits }
\end{aligned}
$$

Specific Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness Y, given that it is raining?

$$
\begin{aligned}
H(Y \mid X=x) & =-\sum_{y \in Y} p(y \mid x) \log _{2} p(y \mid x) \\
& =-\frac{24}{25} \log _{2} \frac{24}{25}-\frac{1}{25} \log _{2} \frac{1}{25} \\
& \approx 0.24 \mathrm{bits}
\end{aligned}
$$

- We used: $p(y \mid x)=\frac{p(x, y)}{p(x)}$, and $p(x)=\sum_{y} p(x, y) \quad$ (sum in a row)

Conditional Entropy

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- The expected conditional entropy:

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in X} \sum_{y \in Y} p(x, y) \log _{2} p(y \mid x)
\end{aligned}
$$

Conditional Entropy

- Example: $X=\{$ Raining, Not raining $\}, Y=\{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- What is the entropy of cloudiness, given the knowledge of whether or not it is raining?

$$
\begin{aligned}
H(Y \mid X) & =\sum_{x \in X} p(x) H(Y \mid X=x) \\
& =\frac{1}{4} H(\text { cloudy } \mid \text { is raining })+\frac{3}{4} H(\text { cloudy } \mid \text { not raining }) \\
& \approx 0.75 \text { bits }
\end{aligned}
$$

Conditional Entropy

- Some useful properties:
- H is always non-negative
- Chain rule: $H(X, Y)=H(X \mid Y)+H(Y)=H(Y \mid X)+H(X)$
- If X and Y independent, then X doesn't tell us anything about Y : $H(Y \mid X)=H(Y)$
- But Y tells us everything about $Y: H(Y \mid Y)=0$
- By knowing X, we can only decrease uncertainty about Y : $H(Y \mid X) \leq H(Y)$ (in expectation)

Information Gain

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- How much information about cloudiness do we get by discovering whether it is raining?

$$
\begin{aligned}
I G(Y \mid X) & =H(Y)-H(Y \mid X) \\
& \approx 0.25 \text { bits }
\end{aligned}
$$

- This is called the information gain in Y due to X, or the mutual information of Y and X

Information Gain

	Cloudy	Not Cloudy
Raining	$24 / 100$	$1 / 100$
Not Raining	$25 / 100$	$50 / 100$

- How much information about cloudiness do we get by discovering whether it is raining?

$$
\begin{aligned}
I G(Y \mid X) & =H(Y)-H(Y \mid X) \\
& \approx 0.25 \text { bits }
\end{aligned}
$$

- This is called the information gain in Y due to X, or the mutual information of Y and X
- If X is completely uninformative about $Y: I G(Y \mid X)=0$
- If X is completely informative about $Y: I G(Y \mid X)=H(Y)$

Revisiting Our Original Example

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree attribute!
- What is the information gain of this split?

- Root entropy: $H(Y)=-\frac{49}{149} \log _{2}\left(\frac{49}{149}\right)-\frac{100}{149} \log _{2}\left(\frac{100}{149}\right) \approx 0.91$
- Leafs entropy: $H(Y \mid$ left $)=0, H(Y \mid r i g h t) \approx 1$.
- $I G($ split $) \approx 0.91-\left(\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1\right) \approx 0.24>0$

Constructing Decision Trees

- At each level, one must choose:

1. Which variable to split.
2. Possibly where to split it.

- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

Decision Tree Construction Algorithm

- Simple, greedy, recursive approach, builds up tree node-by-node

1. pick an attribute to split at a non-terminal node
2. split examples into groups based on attribute value
3. for each group:

- if no examples - return majority from parent
- else if all examples in same class - return class
- else loop to step 1

Back to Our Example

Example	Input Attributes										Goal
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
x_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	$y_{1}=$ Yes
X_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_{2}=\mathrm{No}$
x_{3}	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_{3}=Y e s$
x_{4}	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_{4}=Y$ es
x_{5}	Yes	No	Yes	No	Full	\$\$8	No	Yes	French	>60	$y_{5}=N_{o}$
x_{6}	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	$y_{6}=Y$ es
\mathbf{x}_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	$y_{7}=N_{0}$
x_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	$y_{8}=Y e s$
x_{9}	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_{9}=N_{o}$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$8	No	Yes	Italian	10-30	$y_{10}=N_{o}$
x_{11}	No	No	No	No	None	\$	No	No	Thai	0-10	$y_{11}=N_{o}$
x_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	$y_{12}=Y e s$

Attributes:

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host ($0-10$ minutes, 10-30, 30-60, >60).

[from: Russell \& Norvig]

Attribute Selection

$$
I G(Y)=H(Y)-H(Y \mid X)
$$

$$
I G(\text { type })=1-\left[\frac{2}{12} H(Y \mid \text { fr. })+\frac{2}{12} H(Y \mid \text { It. })+\frac{4}{12} H(Y \mid \text { Thai })+\frac{4}{12} H(Y \mid \text { Bur. })\right]=0
$$

$$
I G(\text { Patrons })=1-\left[\frac{2}{12} H(0,1)+\frac{4}{12} H(1,0)+\frac{6}{12} H\left(\frac{2}{6}, \frac{4}{6}\right)\right] \approx 0.541
$$

Which Tree is Better?

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Computational efficiency (avoid redundant, spurious attributes)
- Avoid over-fitting training examples
- Human interpretability

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Computational efficiency (avoid redundant, spurious attributes)
- Avoid over-fitting training examples
- Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
- Useful principle, but hard to formalize (how to define simplicity?)
- See Domingos, 1999, "The role of Occam's razor in knowledge discovery"

What Makes a Good Tree?

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
- Computational efficiency (avoid redundant, spurious attributes)
- Avoid over-fitting training examples
- Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
- Useful principle, but hard to formalize (how to define simplicity?)
- See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
- Split based on a threshold, chosen to maximize information gain

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
- Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs.

Decision Tree Miscellany

- Problems:
- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
- Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Comparison to k-NN

Advantages of decision trees over KNN

Comparison to k-NN

Advantages of decision trees over KNN

- Good when there are lots of attributes, but only a few are important
- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs
- Fast at test time
- More interpretable

Comparison to k-NN

Advantages of decision trees over KNN

- Good when there are lots of attributes, but only a few are important
- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs
- Fast at test time
- More interpretable

Advantages of KNN over decision trees

Comparison to k-NN

Advantages of decision trees over KNN

- Good when there are lots of attributes, but only a few are important
- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs
- Fast at test time
- More interpretable

Advantages of KNN over decision trees

- Few hyperparameters
- Able to handle attributes/features that interact in complex ways (e.g. pixels)
- Can incorporate interesting distance measures (e.g. shape contexts)
- Typically make better predictions in practice
- As we'll see next lecture, ensembles of decision trees are much stronger. But they lose many of the advantages listed above.

Ensembles and Bagging

Ensemble methods: Overview

- An ensemble of predictors is a set of predictors whose individual decisions are combined in some way to classify new examples
- E.g., (possibly weighted) majority vote
- For this to be nontrivial, the classifiers must differ somehow, e.g.
- Different algorithm
- Different choice of hyperparameters
- Trained on different data
- Trained with different weighting of the training examples
- Ensembles are usually trivial to implement. The hard part is deciding what kind of ensemble you want, based on your goals.

Ensemble methods: Overview

- This lecture: bagging
- Train classifiers independently on random subsets of the training data.
- Later lecture: boosting
- Train classifiers sequentially, each time focusing on training examples that the previous ones got wrong.
- Bagging and boosting serve very different purposes. To understand this, we need to take a detour to understand the bias and variance of a learning algorithm.

Bias and Variance

Loss Functions

- A loss function $L(y, t)$ defines how bad it is if the algorithm predicts y, but the target is actually t.
- Example: 0-1 loss for classification

$$
L_{0-1}(y, t)= \begin{cases}0 & \text { if } y=t \\ 1 & \text { if } y \neq t\end{cases}
$$

- Averaging the 0-1 loss over the training set gives the training error rate, and averaging over the test set gives the test error rate.

Loss Functions

- A loss function $L(y, t)$ defines how bad it is if the algorithm predicts y, but the target is actually t.
- Example: 0-1 loss for classification

$$
L_{0-1}(y, t)= \begin{cases}0 & \text { if } y=t \\ 1 & \text { if } y \neq t\end{cases}
$$

- Averaging the 0-1 loss over the training set gives the training error rate, and averaging over the test set gives the test error rate.
- Example: squared error loss for regression

$$
L_{\mathrm{SE}}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- The average squared error loss is called mean squared error (MSE).

Bias-Variance Decomposition

- Recall that overly simple models underfit the data, and overly complex models overfit.

- We can quantify this effect in terms of the bias/variance decomposition.
- Bias and variance of what?

Bias-Variance Decomposition: Basic Setup

- Suppose the training set \mathcal{D} consists of pairs $\left(\mathbf{x}_{i}, t_{i}\right)$ sampled independent and identically distributed (i.i.d.) from a single data generating distribution $p_{\text {data }}$.
- Pick a fixed query point \mathbf{x} (denoted with a green x).

Bias-Variance Decomposition: Basic Setup

- Suppose the training set \mathcal{D} consists of pairs $\left(\mathbf{x}_{i}, t_{i}\right)$ sampled independent and identically distributed (i.i.d.) from a single data generating distribution $p_{\text {data }}$.
- Pick a fixed query point \mathbf{x} (denoted with a green x).
- Consider an experiment where we sample lots of training sets independently from $p_{\text {data }}$.

Bias-Variance Decomposition: Basic Setup

- Let's run our learning algorithm on each training set, and compute its prediction y at the query point \mathbf{x}.
- We can view y as a random variable, where the randomness comes from the choice of training set.
- The classification accuracy is determined by the distribution of y.

$$
y=
$$

$y=$

$y=$

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

Since y is a random variable, we can talk about its expectation, variance, etc.

Bias-Variance Decomposition: Basic Setup

- Recap of basic setup:

Bias-Variance Decomposition: Basic Setup

- Recap of basic setup:

- Notice: given x, y is independent of t.

Bias-Variance Decomposition: Basic Setup

- Recap of basic setup:

- Notice: given x, y is independent of t.
- This gives a distribution over the loss at \mathbf{x}, with expectation $\mathbb{E}[L(y, t) \mid \mathbf{x}]$.
- For each query point \mathbf{x}, the expected loss is different. We are interested in minimizing the expectation of this with respect to $\mathbf{x} \sim p_{\text {data }}$.

Bayes Optimality

- For now, focus on squared error loss, $L(y, t)=\frac{1}{2}(y-t)^{2}$.
- A first step: suppose we knew the conditional distribution $p(t \mid \mathbf{x})$. What value y should we predict?
- Here, we are treating t as a random variable and choosing y.

Bayes Optimality

- For now, focus on squared error loss, $L(y, t)=\frac{1}{2}(y-t)^{2}$.
- A first step: suppose we knew the conditional distribution $p(t \mid \mathbf{x})$. What value y should we predict?
- Here, we are treating t as a random variable and choosing y.
- Claim: $y_{*}=\mathbb{E}[t \mid \mathbf{x}]$ is the best possible prediction.
- Proof:

$$
\begin{aligned}
\mathbb{E}\left[(y-t)^{2} \mid \mathbf{x}\right] & =\mathbb{E}\left[y^{2}-2 y t+t^{2} \mid \mathbf{x}\right] \\
& =y^{2}-2 y \mathbb{E}[t \mid \mathbf{x}]+\mathbb{E}\left[t^{2} \mid \mathbf{x}\right] \\
& =y^{2}-2 y \mathbb{E}[t \mid \mathbf{x}]+\mathbb{E}[t \mid \mathbf{x}]^{2}+\operatorname{Var}[t \mid \mathbf{x}] \\
& =y^{2}-2 y y_{*}+y_{*}^{2}+\operatorname{Var}[t \mid \mathbf{x}] \\
& =\left(y-y_{*}\right)^{2}+\operatorname{Var}[t \mid \mathbf{x}]
\end{aligned}
$$

Bayes Optimality

$$
\mathbb{E}\left[(y-t)^{2} \mid \mathbf{x}\right]=\left(y-y_{*}\right)^{2}+\operatorname{Var}[t \mid \mathbf{x}]
$$

- The first term is nonnegative, and can be made 0 by setting $y=y_{*}$.
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
- This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
- Notice that this term doesn't depend on y.
- This process of choosing a single value y_{*} based on $p(t \mid \mathbf{x})$ is an example of decision theory.

Bayes Optimality

- Now return to treating y as a random variable (where the randomness comes from the choice of dataset).
- We can decompose out the expected loss (suppressing the conditioning on \mathbf{x} for clarity):

$$
\begin{aligned}
\mathbb{E}\left[(y-t)^{2}\right] & =\mathbb{E}\left[\left(y-y_{*}\right)^{2}\right]+\operatorname{Var}(t) \\
& =\mathbb{E}\left[y_{*}^{2}-2 y_{*} y+y^{2}\right]+\operatorname{Var}(t) \\
& =y_{*}^{2}-2 y_{*} \mathbb{E}[y]+\mathbb{E}\left[y^{2}\right]+\operatorname{Var}(t) \\
& =y_{*}^{2}-2 y_{*} \mathbb{E}[y]+\mathbb{E}[y]^{2}+\operatorname{Var}(y)+\operatorname{Var}(t) \\
& =\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
\end{aligned}
$$

Bayes Optimality

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- We just split the expected loss into three terms:
- bias: how wrong the expected prediction is (corresponds to underfitting)
- variance: the amount of variability in the predictions (corresponds to overfitting)
- Bayes error: the inherent unpredictability of the targets
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

Bias/Variance Decomposition: Another Visualization

- We can visualize this decomposition in output space, where the axes correspond to predictions on the test examples.
- If we have an overly simple model (e.g. KNN with large k), it might have
- high bias (because it's too simplistic to capture the structure in the data)
- low variance (because there's enough data to get a stable estimate of the decision boundary)

Bias/Variance Decomposition: Another Visualization

- If you have an overly complex model (e.g. KNN with $k=1$), it might have
- low bias (since it learns all the relevant structure)
- high variance (it fits the quirks of the data you happened to sample)

Bagging

Now, back to bagging!

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- Bayes error:

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- Bayes error: unchanged, since we have no control over it

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- Bayes error: unchanged, since we have no control over it
- Bias:

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- Bayes error: unchanged, since we have no control over it
- Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}[y]=\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} y_{i}\right]=\mathbb{E}\left[y_{i}\right]
$$

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- Bayes error: unchanged, since we have no control over it
- Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}[y]=\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} y_{i}\right]=\mathbb{E}\left[y_{i}\right]
$$

- Variance:

Bagging: Motivation

- Suppose we could sample m independent training sets from $p_{\text {data }}$.
- We could then compute the prediction y_{i} based on each one, and take the average $y=\frac{1}{m} \sum_{i=1}^{m} y_{i}$.
- How does this affect the three terms of the expected loss?

$$
\mathbb{E}\left[(y-t)^{2}\right]=\underbrace{\left(y_{*}-\mathbb{E}[y]\right)^{2}}_{\text {bias }}+\underbrace{\operatorname{Var}(y)}_{\text {variance }}+\underbrace{\operatorname{Var}(t)}_{\text {Bayes error }}
$$

- Bayes error: unchanged, since we have no control over it
- Bias: unchanged, since the averaged prediction has the same expectation

$$
\mathbb{E}[y]=\mathbb{E}\left[\frac{1}{m} \sum_{i=1}^{m} y_{i}\right]=\mathbb{E}\left[y_{i}\right]
$$

- Variance: reduced, since we're averaging over independent samples

$$
\operatorname{Var}[y]=\operatorname{Var}\left[\frac{1}{m} \sum_{i=1}^{m} y_{i}\right]=\frac{1}{m^{2}} \sum_{i=1}^{m} \operatorname{Var}\left[y_{i}\right]=\frac{1}{m} \operatorname{Var}\left[y_{i}\right]
$$

Bagging: The Idea

- The bootstrap is one of the most important ideas in all of statistics!
- If using all the data at once is too slow, can split up data and averaging predictions.
- But splitting up data increases variance of each predictor.
- In practice, sometimes we do bootstrap using overlapping subsets of the whole dataset: bootstrap aggregation, or bagging.
- Take a single dataset \mathcal{D} with n examples.
- Generate m new datasets, each by sampling n training examples from \mathcal{D}, with replacement.
- Average the predictions of models trained on each of these datasets.

Bagging: The Idea

- Problem: the datasets are not independent, so we don't get the $1 / m$ variance reduction.
- Possible to show that if the sampled predictions have variance σ^{2} and correlation ρ, then

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{i=1}^{m} y_{i}\right)=\frac{1}{m}(1-\rho) \sigma^{2}+\rho \sigma^{2} .
$$

Bagging: The Idea

- Problem: the datasets are not independent, so we don't get the $1 / m$ variance reduction.
- Possible to show that if the sampled predictions have variance σ^{2} and correlation ρ, then

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{i=1}^{m} y_{i}\right)=\frac{1}{m}(1-\rho) \sigma^{2}+\rho \sigma^{2}
$$

- Ironically, it can be advantageous to introduce additional variability into your algorithm, as long as it reduces the correlation between samples.
- Intuition: you want to invest in a diversified portfolio, not just one stock.
- Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.

Random Forests

- Random forests $=$ bagged decision trees, with one extra trick to decorrelate the predictions
- When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- Random forests are probably the best black-box machine learning algorithm - they often work well with no tuning whatsoever.
- one of the most widely used algorithms in Kaggle competitions

Summary

- Bagging reduces overfitting by averaging predictions.
- Used in most competition winners
- Even if a single model is great, a small ensemble usually helps.
- Limitations:
- Does not reduce bias.
- There is still correlation between classifiers.
- Random forest solution: Add more randomness.

