CSC 2515 Lecture 3: Linear Models I

David Duvenaud

Based on Materials from Roger Grosse, University of Toronto

Announcements

- Markus link posted A1 due Thursday. Beware 5MB limit on pdfs!
- TA office hours posted.
- Videos now downloadable from MyMedia.

Overview

- So far, we've talked about procedures for learning.
- KNN, decision trees, bagging
- For the remainder of this course, we'll take a more modular approach:
- choose a model describing the relationships between variables of interest
- define a loss function quantifying how bad is the fit to the data
- choose a regularizer saying how much we prefer different candidate explanations
- fit the model, e.g. using an optimization algorithm
- By mixing and matching these modular components, your ML skills become combinatorially more powerful!

Problem Setup

- Want to predict a scalar t as a function of a scalar x
- Given a dataset of pairs $\left\{\left(\mathbf{x}^{(i)}, t^{(i)}\right)\right\}_{i=1}^{N}$
- The $\mathbf{x}^{(i)}$ are called inputs, and the $t^{(i)}$ are called targets.

Problem Setup

- Model: y is a linear function of x :

$$
y=w x+b
$$

- y is the prediction
- w is the weight
- b is the bias
- w and b together are the parameters
- Settings of the parameters are called hypotheses

Problem Setup

- Loss function: squared error (says how bad the fit is)

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.

Problem Setup

- Loss function: squared error (says how bad the fit is)

$$
\mathcal{L}(y, t)=\frac{1}{2}(y-t)^{2}
$$

- $y-t$ is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Cost function: loss function averaged over all training examples

$$
\begin{aligned}
\mathcal{J}(w, b) & =\frac{1}{2 N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right)^{2} \\
& =\frac{1}{2 N} \sum_{i=1}^{N}\left(w x^{(i)}+b-t^{(i)}\right)^{2}
\end{aligned}
$$

Problem Setup

Problem setup

- Suppose we have multiple inputs x_{1}, \ldots, x_{D}. This is referred to as multivariable regression.
- This is no different than the single input case, just harder to visualize.
- Linear model:

$$
y=\sum_{j} w_{j} x_{j}+b
$$

Vectorization

- Computing the prediction using a for loop:

$$
\begin{aligned}
& y=b \\
& \text { for } j \text { in range(M): } \\
& y+=w[j] * \times[j]
\end{aligned}
$$

- For-loops in Python are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$
\begin{gathered}
\mathbf{w}=\left(w_{1}, \ldots, w_{D}\right)^{\top} \quad \mathbf{x}=\left(x_{1}, \ldots, x_{D}\right) \\
y=\mathbf{w}^{\top} \mathbf{x}+b
\end{gathered}
$$

- This is simpler and generally much faster:

$$
y=n p \cdot \operatorname{dot}(w, x)+b
$$

Vectorization

Why vectorize?

Vectorization

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code can be much faster
- Cut down on Python interpreter overhead
- Use highly optimized linear algebra libraries
- Matrix multiplication is very fast on a Graphics Processing Unit (GPU)

Vectorization

- We can take this a step further. Organize all the training examples into the design matrix \mathbf{X} with one row per training example, and all the targets into the target vector \mathbf{t}.

one feature across
 all training examples

$$
\mathbf{X}=\left(\begin{array}{l}
\mathbf{x}^{(1) \top} \\
\mathbf{x}^{(2) \top} \\
\mathbf{x}^{(3) \top}
\end{array}\right)=\left(\begin{array}{c|c|cc}
\cline { 2 - 4 } & 0 & 3 & 0 \\
\hline 6 & -1 & 5 & 3 \\
\hline 2 & 5 & -2 & 8
\end{array}\right) \quad \begin{gathered}
\text { one training } \\
\text { example (vector) }
\end{gathered}
$$

- Computing the predictions for the whole dataset:

$$
\mathbf{X} \mathbf{w}+b \mathbf{1}=\left(\begin{array}{c}
\mathbf{w}^{\top} \mathbf{x}^{(1)}+b \\
\vdots \\
\mathbf{w}^{\top} \mathbf{x}^{(N)}+b
\end{array}\right)=\left(\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(N)}
\end{array}\right)=\mathbf{y}
$$

Vectorization

- Computing the squared error cost across the whole dataset:

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X} \mathbf{w}+b \mathbf{1} \\
\mathcal{J} & =\frac{1}{2 N}\|\mathbf{y}-\mathbf{t}\|^{2}
\end{aligned}
$$

- In Python:

$$
\begin{aligned}
& y=n p \cdot \operatorname{dot}(x, w)+b \\
& \operatorname{cost}=n p \cdot \operatorname{sum}\left((y-t)^{* *} 2\right) /\left(2 .^{*} N\right)
\end{aligned}
$$

Solving the optimization problem

- We defined a cost function. This is what we'd like to minimize.
- Recall from calculus class: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
- Multivariate generalization: partial derivatives must be zero.
- Finding a minimum by analytically setting the partial derivatives to zero is called direct solution.

Direct solution

- Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$
\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+h, x_{2}\right)-f\left(x_{1}, x_{2}\right)}{h}
$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$
\begin{aligned}
\frac{\partial y}{\partial w_{j}} & =\frac{\partial}{\partial w_{j}}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =x_{j} \\
\frac{\partial y}{\partial b} & =\frac{\partial}{\partial b}\left[\sum_{j^{\prime}} w_{j^{\prime}} x_{j^{\prime}}+b\right] \\
& =1
\end{aligned}
$$

Direct solution

- Chain rule for derivatives:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\mathrm{d} \mathcal{L}}{\mathrm{~d} y} \frac{\partial y}{\partial w_{j}} \\
& =\frac{\mathrm{d}}{\mathrm{~d} y}\left[\frac{1}{2}(y-t)^{2}\right] \cdot x_{j} \\
& =(y-t) x_{j} \\
\frac{\partial \mathcal{L}}{\partial b} & =y-t
\end{aligned}
$$

- Cost derivatives (average over data points):

$$
\begin{aligned}
\frac{\partial \mathcal{J}}{\partial w_{j}} & =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)} \\
\frac{\partial \mathcal{J}}{\partial b} & =\frac{1}{N} \sum_{i=1}^{N} y^{(i)}-t^{(i)}
\end{aligned}
$$

Direct solution

- The minimum must occur at a point where the partial derivatives are zero.

$$
\frac{\partial \mathcal{J}}{\partial w_{j}}=0 \quad \frac{\partial \mathcal{J}}{\partial b}=0
$$

- If $\partial \mathcal{J} / \partial w_{j} \neq 0$, you could reduce the cost by changing w_{j}.
- This turns out to give a system of linear equations, which we can solve efficiently. Full derivation in the readings.
- Optimal weights:

$$
\mathbf{w}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{t}
$$

- Linear regression is one of only a handful of models in this course that permit direct solution.

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.

Gradient descent

- Observe:
- if $\partial \mathcal{J} / \partial w_{j}>0$, then slightly increasing w_{j} increases \mathcal{J}.
- if $\partial \mathcal{J} / \partial w_{j}<0$, then slightly increasing w_{j} decreases \mathcal{J}.
- The following update decreases the cost function, assuming small enough α :

$$
\begin{aligned}
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{J}}{\partial w_{j}} \\
& =w_{j}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) x_{j}^{(i)}
\end{aligned}
$$

- α is a learning rate. The larger it is, the faster \mathbf{w} changes.
- We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001

Gradient descent

- This gets its name from the gradient:

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.

Gradient descent

- This gets its name from the gradient:

$$
\frac{\partial \mathcal{J}}{\partial \mathbf{w}}=\left(\begin{array}{c}
\frac{\partial \mathcal{J}}{\partial w_{1}} \\
\vdots \\
\frac{\partial \mathcal{J}}{\partial w_{D}}
\end{array}\right)
$$

- This is the direction of fastest increase in \mathcal{J}.
- Update rule in vector form:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}} \\
& =\mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
\end{aligned}
$$

- Hence, gradient descent updates the weights in the direction of fastest decrease.

Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_ regression.pdf\#page=21

Gradient descent

- Why gradient descent, if we can find the optimum directly?

Gradient descent

- Why gradient descent, if we can find the optimum directly?
- GD can be applied to a much broader set of models
- GD can be easier to implement than direct solutions, especially with automatic differentiation software
- For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $\mathcal{O}\left(D^{3}\right)$ algorithm).

Feature mappings

- Suppose we want to model the following data

-Pattern Recognition and Machine Learning, Christopher Bishop.
- One option: fit a low-degree polynomial; this is known as polynomial regression

$$
y=w_{3} x^{3}+w_{2} x^{2}+w_{1} x+w_{0}
$$

- Do we need to derive a whole new algorithm?

Feature mappings

- We get polynomial regression for free!
- Define the feature map

$$
\psi(x)=\left(\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3}
\end{array}\right)
$$

- Polynomial regression model:

$$
y=\mathbf{w}^{\top} \boldsymbol{\psi}(x)
$$

- All of the derivations and algorithms so far in this lecture remain exactly the same!

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

$$
y=w_{0}+w_{1} x
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

$$
y=w_{0}+w_{1} x+w_{2} x^{2}+w_{3} x^{3}+\ldots+w_{9} x^{9}
$$

-Pattern Recognition and Machine Learning, Christopher Bishop.

Generalization

Underfitting : model is too simple - does not fit the data.

Overfitting : model is too complex - fits perfectly, does not generalize.

Generalization

- Training and test error as a function of \# training examples and \# parameters:

\# training examples

\# parameters

Regularization

- The degree of the polynomial is a hyperparameter, just like k in KNN. We can tune it using a validation set.
- But restricting the size of the model is a crude solution, since you'll never be able to learn a more complex model, even if the data support it.
- Another approach: keep the model large, but regularize it
- Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

L^{2} Regularization

Observation: polynomials that overfit often have large coefficients.

$$
y=0.1 x^{5}+0.2 x^{4}+0.75 x^{3}-x^{2}-2 x+2
$$

$$
y=-7.2 x^{5}+10.4 x^{4}+24.5 x^{3}-37.9 x^{2}-3.6 x+12
$$

So let's try to keep the coefficients small.

L^{2} Regularization

Another reason we want weights to be small:

- Suppose inputs x_{1} and x_{2} are nearly identical for all training examples. The following two hypotheses make nearly the same predictions:

$$
\mathbf{w}=\binom{1}{1} \quad \mathbf{w}=\binom{-9}{11}
$$

- But the second network might make weird predictions if the test distribution is slightly different (e.g. x_{1} and x_{2} match less closely).

L^{2} Regularization

- We can encourage the weights to be small by choosing as our regularizer the L^{2} penalty.

$$
\mathcal{R}(\mathbf{w})=\frac{1}{2}\|\mathbf{w}\|^{2}=\frac{1}{2} \sum_{j} w_{j}^{2} .
$$

- Note: to be pedantic, the L^{2} norm is Euclidean distance, so we're really regularizing the squared L^{2} norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

$$
\mathcal{J}_{\mathrm{reg}}=\mathcal{J}+\lambda \mathcal{R}=\mathcal{J}+\frac{\lambda}{2} \sum_{j} w_{j}^{2}
$$

- Here, λ is a hyperparameter that we can tune using a validation set.

L^{2} Regularization

- The geometric picture:

L^{2} Regularization

- Recall the gradient descent update:

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
$$

- The gradient descent update of the regularized cost has an interesting interpretation as weight decay:

$$
\begin{aligned}
\mathbf{w} & \leftarrow \mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \frac{\partial \mathcal{R}}{\partial \mathbf{w}}\right) \\
& =\mathbf{w}-\alpha\left(\frac{\partial \mathcal{J}}{\partial \mathbf{w}}+\lambda \mathbf{w}\right) \\
& =(1-\alpha \lambda) \mathbf{w}-\alpha \frac{\partial \mathcal{J}}{\partial \mathbf{w}}
\end{aligned}
$$

Conclusion

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the optimization problem using one of two strategies
- direct solution (set derivatives to zero)
- gradient descent
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer

Linear Classification

Overview

- Classification: predicting a discrete-valued target
- Binary classification: predicting a binary-valued target
- Examples
- predict whether a patient has a disease, given the presence or absence of various symptoms
- classify e-mails as spam or non-spam
- predict whether a financial transaction is fraudulent

Overview

Binary linear classification

- classification: predict a discrete-valued target
- binary: predict a binary target $t \in\{0,1\}$
- Training examples with $t=1$ are called positive examples, and training examples with $t=0$ are called negative examples. Sorry.
- linear: model is a linear function of \mathbf{x}, followed by a threshold:

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq r \\
0 & \text { if } z<r\end{cases}
\end{aligned}
$$

Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \quad \mathbf{w}^{\top} \mathbf{x}+\underbrace{b-r}_{\triangleq b^{\prime}} \geq 0 .
$$

Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \quad \mathbf{w}^{\top} \mathbf{x}+\underbrace{b-r}_{\triangleq b^{\prime}} \geq 0 .
$$

Eliminating the bias

- Add a dummy feature x_{0} which always takes the value 1 . The weight w_{0} is equivalent to a bias.

Some simplifications

Eliminating the threshold

- We can assume WLOG that the threshold $r=0$:

$$
\mathbf{w}^{T} \mathbf{x}+b \geq r \quad \Longleftrightarrow \quad \mathbf{w}^{T} \mathbf{x}+\underbrace{b-r}_{\triangleq b^{\prime}} \geq 0
$$

Eliminating the bias

- Add a dummy feature x_{0} which always takes the value 1 . The weight w_{0} is equivalent to a bias.

Simplified model

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x} \\
& y= \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

Examples

NOT

$$
\begin{array}{cc|c}
x_{0} & x_{1} & \mathrm{t} \\
\hline 1 & 0 & 1 \\
1 & 1 & 0
\end{array}
$$

Examples

NOT

$$
\begin{array}{cc|c}
x_{0} & x_{1} & \mathrm{t} \\
\hline 1 & 0 & 1 \\
1 & 1 & 0 \\
& \\
& b>0 \\
b+w & <0
\end{array}
$$

Examples

NOT

$$
\begin{array}{cc|c}
x_{0} & x_{1} & t \\
\hline 1 & 0 & 1 \\
1 & 1 & 0 \\
& \\
& \\
b+w & >0 \\
b+w
\end{array}
$$

$$
b=1, w=-2
$$

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
b<0
$$

Examples

AND

$$
\begin{array}{ccc|c}
x_{0} & x_{1} & x_{2} & t \\
\\
\hline 1 & 0 & 0 & 0
\end{array} \quad b<0
$$

Examples

AND

$$
\begin{array}{ccc|cr}
x_{0} & x_{1} & x_{2} & t & b<0 \\
\hline 1 & 0 & 0 & 0 & b+w_{2}<0 \\
1 & 0 & 1 & 0 & b+w_{1}<0 \\
1 & 1 & 0 & 0 &
\end{array}
$$

Examples

AND

x_{0}	x_{1}	x_{2}	t
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$
\begin{aligned}
b & <0 \\
b+w_{2} & <0 \\
b+w_{1} & <0 \\
b+w_{1}+w_{2} & >0
\end{aligned}
$$

Examples

AND

$$
\begin{array}{ccc|cr}
x_{0} & x_{1} & x_{2} & t & b<0 \\
\hline 1 & 0 & 0 & 0 & b+w_{2}<0 \\
1 & 0 & 1 & 0 & b+w_{1}<0 \\
1 & 1 & 0 & 0 & b+w_{1}+w_{2}>0 \\
1 & 1 & 1 & 1 & \\
\\
& \\
& \\
&
\end{array}
$$

The Geometric Picture

Input Space, or Data Space

- Here we're visualizing the NOT example
- Training examples are points
- Hypotheses are half-spaces whose boundaries pass through the origin
- The boundary is the decision boundary
- In 2-D, it's a line, but think of it as a hyperplane
- If the training examples can be separated by a linear decision rule, they are linearly separable.

The Geometric Picture

Weight Space

$$
\begin{aligned}
w_{0} & >0 \\
w_{0}+w_{1} & <0
\end{aligned}
$$

- Hypotheses are points
- Training examples are half-spaces whose boundaries pass through the origin
- The region satisfying all the constraints is the feasible region; if this region is nonempty, the problem is feasible

The Geometric Picture

- The AND example requires three dimensions, including the dummy one.
- To visualize data space and weight space for a 3-D example, we can look at a 2-D slice:

- The visualizations are similar, except that the decision boundaries and the constraints need not pass through the origin.

The Geometric Picture

Visualizations of the AND example

Slice for $x_{0}=1$

Weight Space

Slice for $w_{0}=-1$

What happened to the fourth constraint?

The Geometric Picture

Some datasets are not linearly separable, e.g. XOR

Proof coming in a later lecture...

Overview

- Recall: binary linear classifiers. Targets $t \in\{0,1\}$

$$
\begin{aligned}
& z=\mathbf{w}^{T} \mathbf{x}+b \\
& y= \begin{cases}1 & \text { if } z \geq 0 \\
0 & \text { if } z<0\end{cases}
\end{aligned}
$$

- What if we can't classify all the training examples correctly?
- Seemingly obvious loss function: 0-1 loss

$$
\begin{aligned}
\mathcal{L}_{0-1}(y, t) & = \begin{cases}0 & \text { if } y=t \\
1 & \text { if } y \neq t\end{cases} \\
& =\mathbb{1}_{y \neq t} .
\end{aligned}
$$

Attempt 1: 0-1 loss

- As always, the cost \mathcal{J} is the average loss over training examples; for $0-1$ loss, this is the error rate:

$$
\mathcal{J}=\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{y^{(i) \neq t^{(i)}}}
$$

$$
\frac{1}{3}(\square+\square)=\square
$$

Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}}{\partial w_{j}}=\frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

Attempt 1: 0-1 loss

- Problem: how to optimize?
- Chain rule:

$$
\frac{\partial \mathcal{L}_{0-1}}{\partial w_{j}}=\frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_{j}}
$$

- But $\partial \mathcal{L}_{0-1} / \partial z$ is zero everywhere it's defined!
- $\partial \mathcal{L}_{0-1} / \partial w_{j}=0$ means that changing the weights by a very small amount probably has no effect on the loss.
- The gradient descent update is a no-op.

Attempt 2: Linear Regression

- Sometimes we can replace the loss function we care about with one which is easier to optimize. This is known as a surrogate loss function.
- We already know how to fit a linear regression model. Can we use this instead?

$$
\begin{aligned}
y & =\mathbf{w}^{\top} \mathbf{x}+b \\
\mathcal{L}_{\mathrm{SE}}(y, t) & =\frac{1}{2}(y-t)^{2}
\end{aligned}
$$

- Doesn't matter that the targets are actually binary.
- Threshold predictions at $y=1 / 2$.

Attempt 2: Linear Regression

The problem:

- The loss function hates when you make correct predictions with high confidence!
- If $t=1$, it's more unhappy about $y=10$ than $y=0$.

Attempt 3: Logistic Activation Function

- There's obviously no reason to predict values outside $[0,1]$. Let's squash y into this interval.
- The logistic function is a kind of sigmoidal, or S-shaped, function:

$$
\sigma(z)=\frac{1}{1+e^{-z}}
$$

- A linear model with a logistic nonlinearity is known as log-linear:

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
\mathcal{L}_{\mathrm{SE}}(y, t) & =\frac{1}{2}(y-t)^{2} .
\end{aligned}
$$

- Used in this way, σ is called an activation function, and z is called the logit.

Attempt 3: Logistic Activation Function

The problem:

(plot of $\mathcal{L}_{\text {SE }}$ as a function of z)

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_{j}} \\
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{L}}{\partial w_{j}}
\end{aligned}
$$

Attempt 3: Logistic Activation Function

The problem:

(plot of $\mathcal{L}_{\text {SE }}$ as a function of z)

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{j}} & =\frac{\partial \mathcal{L}}{\partial z} \frac{\partial z}{\partial w_{j}} \\
w_{j} & \leftarrow w_{j}-\alpha \frac{\partial \mathcal{L}}{\partial w_{j}}
\end{aligned}
$$

- In gradient descent, a small gradient (in magnitude) implies a small step.
- If the prediction is really wrong, shouldn't you take a large step?
- This happens because the loss function saturates.

Logistic Regression

- Because $y \in[0,1]$, we can interpret it as the estimated probability that $t=1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.

Logistic Regression

- Because $y \in[0,1]$, we can interpret it as the estimated probability that $t=1$.
- The pundits who were 99% confident Clinton would win were much more wrong than the ones who were only 90% confident.
- Cross-entropy loss captures this intuition:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{CE}}(y, t) & = \begin{cases}-\log y & \text { if } t=1 \\
-\log (1-y) & \text { if } t=0\end{cases} \\
& =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

- Which is just $\mathcal{L}_{\mathrm{CE}}(y, t)=-\log \operatorname{Bernoulli}(t \mid y)$

Logistic Regression

Logistic Regression:

$$
\begin{aligned}
z & =\mathbf{w}^{\top} \mathbf{x}+b \\
y & =\sigma(z) \\
& =\frac{1}{1+e^{-z}} \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

[[gradient derivation in the notes]]

Logistic Regression

- Problem: what if $t=1$ but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
\begin{aligned}
y & =\sigma(z) & \Rightarrow y \approx 0 \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y) & \Rightarrow \text { computes } \log 0
\end{aligned}
$$

Logistic Regression

- Problem: what if $t=1$ but you're really confident it's a negative example $(z \ll 0)$?
- If y is small enough, it may be numerically zero. This can cause very subtle and hard-to-find bugs.

$$
\begin{aligned}
y & =\sigma(z) & \Rightarrow y \approx 0 \\
\mathcal{L}_{\mathrm{CE}} & =-t \log y-(1-t) \log (1-y) & \Rightarrow \text { computes } \log 0
\end{aligned}
$$

- Instead, we combine the activation function and the loss into a single logistic-cross-entropy function.

$$
\mathcal{L}_{\mathrm{LCE}}(z, t)=\mathcal{L}_{\mathrm{CE}}(\sigma(z), t)=t \log \left(1+e^{-z}\right)+(1-t) \log \left(1+e^{z}\right)
$$

- Numerically stable computation:

$$
\mathrm{E}=\mathrm{t} * \mathrm{np} \cdot \operatorname{logaddexp}(0,-\mathrm{z})+(1-\mathrm{t}) * \mathrm{np} \cdot \operatorname{logaddexp}(0, \mathrm{z})
$$

Logistic Regression

Comparison of loss functions:

Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

Logistic Regression

Comparison of gradient descent updates:

- Linear regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Logistic regression:

$$
\mathbf{w} \leftarrow \mathbf{w}-\frac{\alpha}{N} \sum_{i=1}^{N}\left(y^{(i)}-t^{(i)}\right) \mathbf{x}^{(i)}
$$

- Not a coincidence! These are both examples of generalized linear models, but that's beyond the scope of this course.

