CSC 2515 Lecture 5:

Neural Networks |

David Duvenaud

Based on Materials from Roger Grosse, University of Toronto

Intro ML (UofT) CSC 2515: 5-Neural Networks

Midterm details

@ Feb 24 - online - 10am to 10pm
o Midterm review tutorial on Feb 23
@ Midterm review materials and practice questions posted
o Covering:
o Supervised learning and Unsupervised learning
o Regression and Classification
o K-Nearest Neighbors
o Linear Regression
e Model Complexity and Generalization
o Linear Classification
o Neural networks (today's lecture)
o Decision trees (but not Boosting, and no SVMs)

Intro ML (UofT) CSC 2515: 5-Neural Networks

Limits of Linear Classification

@ Visually, it's obvious that XOR is not linearly separable. But how to
show this?

T2

1

Intro ML (UofT) CSC 2515: 5-Neural Networks

Limits of Linear Classification

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,€S = M +(1-A)x2€8S for0< A< L

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Limits of Linear Classification

Showing that XOR is not linearly separable
@ Half-spaces are obviously convex.

@ Suppose there were some feasible hypothesis. If the positive examples are in
the positive half-space, then the green line segment must be as well.

@ Similarly, the red line segment must line within the negative half-space.

T2

@ But the intersection can't lie in both half-spaces. Contradiction!

Intro ML (UofT) CSC 2515: 5-Neural Networks 5/58

Limits of Linear Classification

A more troubling example

(T mm w0 pattern A e TmsrTrIr) pattern B
Crrm T mmTmir0 pattern A OO rmm T pattern B
e s Pattern A oo pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

Intro ML (UofT) CSC 2515: 5-Neural Networks 6/58

Limits of Linear Classification

A more troubling example

(T mm w0 pattern A e TmsrTrIr) pattern B
Crrm T mw w110 pattern A Orrew T Tmm 1T pattern B

e s Pattern A oo pattern B

@ These images represent 16-dimensional vectors. White = 0, black = 1.

@ Want to distinguish patterns A and B in all possible translations (with
wrap-around)

@ Translation invariance is commonly desired in vision!

@ Suppose there's a feasible solution. The average of all translations of A is the
vector (0.25,0.25,...,0.25). Therefore, this point must be classified as A.

@ Similarly, the average of all translations of B is also (0.25,0.25,...,0.25).
Therefore, it must be classified as B. Contradiction!

Credit: Geoffrey Hinton
Intro ML (UofT) CSC 2515: 5-Neural Networks 6/58

Limits of Linear Classification

@ Sometimes we can overcome this limitation using feature maps, just
like for linear regression. E.g., for XOR:

x|
P(x)= | x
X1X2
x1 x| P1(x) wha(x) s(x) |t
0 O 0 0 0 0
0 1 0 1 0 1
1 0 1 0 0 1
1 1 1 1 1 0

@ This is linearly separable. (Try it!)
@ Not a general solution: it can be hard to pick good basis functions.
Instead, we'll use neural nets to learn nonlinear hypotheses directly.

Intro ML (UofT) CSC 2515: 5-Neural Networks 7/58

Neural Networks

Intro ML (UofT) 15: 5-Neural Networks 8/58

Inspiration: The Brain

@ Our brain has ~ 10 neurons, each of which communicates (is
connected) to ~ 10% other neurons

impulses carried
toward cell body
branches

of axon

dendrites

axon

nucleus terminals

impulses carried

' away from cell body
cell body

Figure: The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Intro ML (UofT) CSC 2515: 5-Neural Networks

Inspiration: The Brain

@ For neural nets, we use a much simpler model neuron, or unit:

Y _ _
output output weights bias

e ylqu(\lszle))

inputs

I I I3
activation function inputs

@ Compare with logistic regression:
y =o(w'x+ b)

@ By throwing together lots of these incredibly simplistic neuron-like
processing units, we can do some powerful computations!

Intro ML (UofT) CSC 2515: 5-Neural Networks

Multilayer Perceptrons

an output
unit

@ We can connect lots of
units together into a
directed acyclic graph.

@ This gives a feed-forward
neural network. That's
in contrast to recurrent
neural networks, which
can have cycles.

o Typically, units are
grouped together into
layers.

a hidden
unit

| aconnection

depth an input

unit

output layer

second hidden layer

first hidden layer

input layer

Intro ML (UofT)

CSC 2515: 5-Neural Networks

Multilayer Perceptrons

@ Each layer connects N input units to M output units.

@ In the simplest case, all input units are connected to all output units. We call this
a fully connected layer. We'll consider other layer types later.

@ Note: the inputs and outputs for a layer are distinct from the inputs and outputs
to the network.

@ Recall from softmax regression: this means we
need an M x N weight matrix.

@ The output units are a function of the input

units:
y = f(x) = ¢ (Wx + b)

@ A multilayer network consisting of fully
connected layers is called a multilayer
perceptron. Despite the name, it has nothing
to do with perceptrons!

Intro ML (UofT) CSC 2515: 5-Neural Networks 12 /58

Multilayer Perceptrons

Some activation functions:

Rectified Linear Unit

(ReLU) Soft RelLU

Linear

y=2 y = max(0, z) y=logl+e

Intro ML (UofT) CSC 2515: 5-Neural Networks

Multilayer Perceptrons

Some activation functions:

Hyperbolic Tangent

Hard Threshold Logistic (tanh)
. 1 lf z > O 1 z -z
Y=Y 0 ifz<0 Y T 1ves y="—"
e+ e7?

Intro ML (UofT) CSC 2515: 5-Neural Networks

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

1

1 ‘@ 1

Intro ML (UofT) CSC 2515: 5-Neural Networks

Multilayer Perceptrons

@ hy computes x; OR x»
@ hy computes x3; AND x;
e y computes hy AND NOT x»

Intro ML (UofT) CSC 2515: 5-Neural Networks

Multilayer Perceptrons

@ Each layer computes a function, so the network

computes a composition of functions: y m

h() = r(M(x) f

@ Or more simply: WO O O

@ Neural nets provide modularity: we can implement
each layer's computations as a black box.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

Intro ML (UofT) CSC 2515: 5-Neural Networks

Feature Learning

@ Neural nets can be viewed as a way of learning features:

linear regressor.
/ clasifier

@ The goal:

Intro ML (UofT) CSC 2515: 5-Neural Networks

Feature Learning

@ Suppose we're trying to classify images of handwritten digits. Each
image is represented as a vector of 28 x 28 = 784 pixel values.

e Each first-layer hidden unit computes o(w; x). It acts as a feature
detector.

@ We can visualize w by reshaping it into an image. Here's an example
that responds to a diagonal stroke.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Feature Learning

Here are some of the features learned by the first hidden layer of a
handwritten digit classifier:

Intro ML (UofT) CSC 2515: 5-Neural Networks

Expressive Power

@ We've seen that there are some functions that linear classifiers can’t
represent. Are deep networks any better?

@ Any sequence of linear layers can be equivalently represented with a

single linear layer.
y = WOWOW® x
N————
aw/

e Deep linear networks are no more expressive than linear regression!
e Linear layers do have their uses — stay tuned!

Intro ML (UofT) CSC 2515: 5-Neural Networks 21/58

Expressive Power

o Multilayer feed-forward neural nets with nonlinear activation functions
are universal function approximators: they can approximate any
function arbitrarily well.

@ This has been shown for various activation functions (thresholds,
logistic, ReLU, etc.)

e Even though RelLU is “almost” linear, it's nonlinear enough!

Intro ML (UofT) CSC 2515: 5-Neural Networks

Expressive Power

Universality for binary inputs and targets:
@ Hard threshold hidden units, linear output

@ Strategy: 20 hidden units, each of which responds to one particular
input configuration

-1 -1 1| -1
-1 1 -17]1
-1 1 1 1

@ Only requires one hidden layer, though it needs to be extremely wide!

Intro ML (UofT) CSC 2515: 5-Neural Networks 23 /58

Expressive Power

@ What about the logistic activation function?

@ You can approximate a hard threshold by scaling up the weights and
biases:

1 : 1
08}

0.6

y = o(x) y = o(5%)

@ This is good: logistic units are differentiable, so we can train them
with gradient descent. (Stay tuned!)

Intro ML (UofT) CSC 2515: 5-Neural Networks

Expressive Power

@ Limits of universality

Intro ML (UofT) CSC 2515: 5-Neural Networks

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
o If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

Intro ML (UofT) CSC 2515: 5-Neural Networks

Expressive Power

@ Limits of universality
e You may need to represent an exponentially large network.
e If you can learn any function, you'll just overfit.
o Really, we desire a compact representation!

@ We've derived units which compute the functions AND, OR, and
NOT. Therefore, any Boolean circuit can be translated into a
feed-forward neural net.

e This suggests you might be able to learn compact representations of
some complicated functions

Intro ML (UofT) CSC 2515: 5-Neural Networks

Training neural networks with backpropagation

Intro ML (UofT) CSC 2515: 5-Neural Networks 26 /58

Recap: Gradient Descent

@ Recall: gradient descent moves opposite the gradient (the direction of
steepest descent)

0.5 - >
-i000 -500 0 500 1000 1500 2000
0o

@ Weight space for a multilayer neural net: one coordinate for each weight or
bias of the network, in all the layers

@ Conceptually, not any different from what we've seen so far — just higher
dimensional and harder to visualize!

@ We want to compute the cost gradient d.7/dw, which is the vector of
partial derivatives.

e This is the average of d£/dw over all the training examples, so in this
lecture we focus on computing d£/dw.

Intro ML (UofT) CSC 2515: 5-Neural Networks 27 /58

Univariate Chain Rule

@ We've already been using the univariate Chain Rule.

@ Recall: if f(x) and x(t) are univariate functions, then

d df dx
9y _ drex
a0 = 4

Intro ML (UofT) CSC 2515: 5-Neural Networks

Univariate Chain Rule

Recall: Univariate logistic least squares model

zZ=wx-+b
y=0(z2)
P

Let's compute the loss derivatives.

Intro ML (UofT)

CSC 2515: 5-Neural Networks

Univariate Chain Rule

How you would have done it in calculus class

L= %(0’(WX+ b) — t)?

oL 9 [1
ow ow
1

Ea—(a(wx-i- b) — t)?

= (o(wx + b) — t)a—w(a(wx +b)—1t)

oL 0

T 6b (G’(WX + b) — t)?

((wx + b) — t)? 1
— 2
Eﬁ(a(wx—i- b) —t)

= (o(wx + b) — t)%(a(wx + b) —t)

= (o(wx + b) — t)o’ (wx + b)%(wx + b)

, 0
= (o(wx + b) — t)o’ (wx + b)afW(WX + b) = (o(wx + b) — t)o’(wx + b)

= (o(wx + b) — t)o’ (wx + b)x

What are the disadvantages of this approach?

Intro ML (UofT) CSC 2515: 5-Neural Networks

Univariate Chain Rule

A more structured way to do it

Computing the derivatives:

Computing the loss: ar
=yt
z=wx-+b di’: o
d '
y i(Z) z-a° (2)
L= E(y —t)° oL _ dL
ow dz ¥
oL _dL
ob ~ dz

Remember, the goal isn't to obtain closed-form solutions, but to be able
to write a program that efficiently computes the derivatives.

Intro ML (UofT) CSC 2515: 5-Neural Networks 31/58

Univariate Chain Rule

@ We can diagram out the computations using a computation graph.

@ The nodes represent all the inputs and computed quantities, and the
edges represent which nodes are computed directly as a function of
which other nodes.

Compute Loss
S

t

e

Compute Derivatives
-—

i

Intro ML (UofT) CSC 2515: 5-Neural Networks

Univariate Chain Rule

A slightly more convenient notation:

@ Use ¥ to denote the derivative d£/dy, sometimes called the error signal.

@ This emphasizes that the error signals are just values our program is
computing (rather than a mathematical operation).

@ This is not a standard notation, but | couldn't find another one that | liked.

Computing the loss: Computing the derivatives:

z=wx+b V=y—t

y_U(Z) f:YO'/(Z)

L= ;(—t)? W=7Zx
b=z

Intro ML (UofT) CSC 2515: 5-Neural Networks

33/58

Multivariate Chain Rule

Problem: what if the computation graph has fan-out > 1?7
This requires the multivariate Chain Rule!

L>-Regularized regression Softmax regression

w1y w2
./I;\ t])1
t
b—— 27— Y—> ,C—’[fre g x1 < yl\}‘ﬁ
u/ >’R,/ atg—-zz—>y2/7
b7 T &
z=wx-+b)21022 Waq
y =o0(2) >
1) zp = wejX; + b
L= E(y —t) J
— 1 2 — eZk
R = EW Yk = Zz ezt
£rcg:£+)\R LZ—Ztklog}/k
k

CSC 2515: 5-Neural Networks

Intro ML (UofT)

Multivariate Chain Rule

@ Suppose we have a function f(x,y) and functions x(t) and y(t). (All
the variables here are scalar-valued.) Then

d of dx Of dy / \
&f(x(t),Y(t)):aa‘Fa}/ ar \ /

@ Example:
flx,y) =y +e¥
x(t) = cost
y(t) = ¢
@ Plug in to Chain Rule:
af _ofdx ofdy
dt Oxdt Oydt
=(ye?¥)-(—sint) + (1 + xe¥) - 2t

Intro ML (UofT) CSC 2515: 5-Neural Networks

Multivariable Chain Rule

@ In the context of backpropagation:

Mathematical expressions
to be evaluated

df ofde ofdy

dt _%dt+6_ydt

Values already computed
by our program

@ In our notation:

Intro ML (UofT) CSC 2515: 5-Neural Networks

Backpropagation

Full backpropagation algorithm:

Let vq,..., vy be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable we're trying to compute derivatives of (e.g. loss).

forward pass

backward pass

Fori=1,...,N

Compute v; as a function of Pa(v;)
oy =1
Fori=N—1,...,1

—_— JE— 8Uj
Ui = D ieCh(w) Ui dor

Intro ML (UofT)

CSC 2515: 5-Neural Networks

Backpropagation

Example: univariate logistic least squares regression

. t Backward pass:
gz—’y_’ﬁ—’['rcg 7

/ g reg
w

=1
___dy
>R _ Al =Yz
AR =yo'(z)
Forward pass: = Lreg A 0z dR
wz 9z 7R
z=wx+b L=°C gdﬁreg : o w
re, dE
y:o’(Z) -7 _ZX+RW
L=ty Y. =z
: Ty
— 2 A N
R=3w =L(y—1t)
Lreg = L+ AR

Intro ML (UofT)

CSC 2515: 5-Neural Networks

Backpropagation

Multilayer Perceptron (multiple outputs):

Backward pass:

) e b =k
Forward pass: = Z—kwﬁ)
&) ® P
zi=) wi'x+b
; v zi = hio'(z)
h,' = O'(Z,') W'.J(-l) = ij
yie=y_wihi+ b W=z

1 2
L= Ezk:(}’k = t)

Intro ML (UofT) CSC 2515: 5-Neural Networks

o Computation graphs showing individual units are cumbersome.

@ As you might have guessed, we typically draw graphs over the
vectorized variables.

w® w2 t
b b®

@ We pass messages back analogous to the ones for scalar-valued nodes.

Intro ML (UofT) CSC 2515: 5-Neural Networks

@ Consider this computation graph:

z 1
z 2 Z—Y
ZF—»Y3
@ Backprop rules:
_ __ Oy oy
Zj = Yk 5 Z=—_-"Y,
zk: 0z; 0z

where Jy/0z is the Jacobian matrix:

m .. on
oy [Ozn
0z : :

OYym ., Oym

0z; 0zp

Intro ML (UofT) CSC 2515: 5-Neural Networks

Examples
@ Matrix-vector product

z—wx Z_w x-—w'z
Ox
@ Elementwise operations
exp(z1) 0
y—epz) - 3 Z= exp(z) 0y
0z :
0 exp(zp)

@ Note: we never explicitly construct the Jacobian. It's usually simpler
and more efficient to compute the vector-Jacobian product directly.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Full backpropagation algorithm (vector form):
Let vi,...,vy be a topological ordering of the computation graph
(i.e. parents come before children.)
vy denotes the variable we're trying to compute derivatives of (e.g. loss).
It's a scalar, which we can treat as a 1-D vector.

Fori=1,...,N

forward pass)
Compute v; as a function of Pa(v;)

vy =1
backward pass Fori=N-1,...,1

— v, | —
. — -1 .
1l Vi = EjeCh(v,-; v Vi

Intro ML (UofT) CSC 2515: 5-Neural Networks

MLP example in vectorized form:

w Wij) f\‘ Backward pass:
X—z—h—Y—L £t
y=~L(y-t)
b b W@ =gh'
Forward pass: b2 — v
2 = WD 4 b h—WOTy
h=o(z) Z=hoo'(2)
y = W®h 4 b® WO =zx"
£=3le-yl? b —z

CSC 2515: 5-Neural Networks

Intro ML (UofT)

Computational Cost

Computational cost of forward pass: one add-multiply operation per
weight
1 1
=Sl + o
j

Computational cost of backward pass: two add-multiply operations
per weight

Rule of thumb: the backward pass is about as expensive as two
forward passes.

For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Backpropagation

@ Backprop is used to train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the gradients.

@ Despite its practical success, backprop is believed to be neurally implausible.

o No evidence for biological signals analogous to error derivatives.

o All the biologically plausible alternatives we know about learn much
more slowly (on computers).

e So how on earth does the brain learn?

Intro ML (UofT) CSC 2515: 5-Neural Networks 46 /58

Gradient Checking

Intro ML (UofT) 15: 5-Neural Networks 47 /58

Gradient Checking

@ We've derived a lot of gradients so far. How do we know if they're
correct?
@ Recall the definition of the partial derivative:

f(Xl,.,.,X,'-l-h,...,XN)—f(Xl,...,X,',...,XN)

0 .
a—xff(xl,...,xm) = /llno

@ Check your derivatives numerically by plugging in a small value of h,
e.g. 10710 This is known as finite differences.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Gradient Checking

@ Even better: the two-sided definition

9] o f(Xl,‘..,X,'—l—h,...,XN)—f(X17...,X,'—h,...,XN)
a—)qf(xh...,xm)—lll_rzlo 5h

— exact
—— one-sided
— two-sided

Intro ML (UofT) CSC 2515: 5-Neural Networks

Gradient Checking

Run gradient checks on small, randomly chosen inputs

@ Use double precision floats (not the default for TensorFlow, PyTorch,
etc.!)

@ Compute the relative error:

|a — bl
|al +]

The relative error should be very small, e.g. 107°

Intro ML (UofT) CSC 2515: 5-Neural Networks

Gradient Checking

Gradient checking is really important!

Learning algorithms often appear to work even if the math is wrong.
o But:

e They might work much better if the derivatives are correct.
e Wrong derivatives might lead you on a wild goose chase.

If you implement derivatives by hand, gradient checking is the single
most important thing you need to do to get your algorithm to work
well.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Convexity

Intro ML (UofT) csc 5-Neural Networks 52 /58

Recap: Convex Sets

Convex Sets

N

@ A set S is convex if any line segment connecting points in S lies
entirely within §. Mathematically,

X1,€S = M +(1-A)x2€8S for0< A< L

@ A simple inductive argument shows that for x1,...,xy € S, weighted
averages, or convex combinations, lie within the set:

Axi+ -+ Ayxy €S for \j >0, M +---Ay=1.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Convex Functions

@ A function f is convex if for any xq,x; in the domain of f,

f((l — A)XO +)\Xl) S (1 — A)f(XO) +)\f(Xl)

@ Equivalently, the set of
points lying above the A=Ni)} N\ R ./
_ +Af(a1) ; i
graph of f is convex.

@ Intuitively: the function

is bowl-shaped. F((1 = Nao ‘
+ Azy) . . :
330 (1 —/\)1‘0 ajl
+ Az;

Intro ML (UofT) CSC 2515: 5-Neural Networks

Convex Functions

@ We just saw that the
least-squares loss ‘
function (y — t)? is

2y = 1) (1= N)£ (o)

convex as a function of y | [0V b\)

@ For a linear model,
z=w'x+ bis a linear |
function of w and b. If (1 s, |
the loss function is o) [i f i
convex as a function of
z, then it is convex as a
function of w and b. - . .

Intro ML (UofT) CSC 2515: 5-Neural Networks

Convex Functions

Which loss functions are convex?

3.0 —
—— least squares
2.5 b — logistic + LS
— logistic + CE
— hinge
2.0
%))
E 1.51
1.0
0.51 B\ N S
0.0 ‘ . 5 ‘ ‘
-3 =2 -1 0 1 2 3

Intro ML (UofT) CSC 2515: 5-Neural Networks

Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Local Minima

@ If a function is convex, it has no spurious local minima, i.e. any local
minimum is also a global minimum.

@ This is very convenient for optimization since if we keep going
downhill, we'll eventually reach a global minimum.

@ Unfortunately, training a network with hidden units cannot be convex
because of permutation symmetries.

o l.e., we can re-order the hidden units in a way that preserves the
function computed by the network.

Q O
Gg\g = G

Intro ML (UofT) CSC 2515: 5-Neural Networks

Local Minima

@ By definition, if a function 7 is convex, then for any set of points
01,...,0p in its domain,

\7()\101+"'+>\N0N) < /\1j(01)+"'+)\/\/j(01\/) for \; > O,Z)\; =1.

@ Because of permutation symmetry, there are K! permutations of the
hidden units in a given layer which all compute the same function.

@ Suppose we average the parameters for all K! permutations. Then we
get a degenerate network where all the hidden units are identical.

@ If the cost function were convex, this solution would have to be better
than the original one, which is ridiculous!

@ Hence, training multilayer neural nets is non-convex.

Intro ML (UofT) CSC 2515: 5-Neural Networks 58 /58

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

Intro ML (UofT) CSC 2515: 5-Neural Networks

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

@ Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

e Then it's essentially a regression problem, which is convex.

e Hence, local optima can probably be fixed by adding more hidden units.
o Note: this argument hasn't been made rigorous.

Intro ML (UofT) CSC 2515: 5-Neural Networks 59 /58

Local Minima (optional, informal)

@ Generally, local minima aren’t something we worry much about when
we train most neural nets.

@ It's possible to construct arbitrarily bad local minima even for ordinary
classification MLPs. It's poorly understood why these don't arise in
practice.

@ Intuition pump: if you have enough randomly sampled hidden units,
you can approximate any function just by adjusting the output layer.

e Then it's essentially a regression problem, which is convex.
e Hence, local optima can probably be fixed by adding more hidden units.
o Note: this argument hasn’t been made rigorous.

@ Over the past 5 years or so, CS theorists have made lots of progress
proving gradient descent converges to global minima for some
non-convex problems, including some specific neural net architectures.

Intro ML (UofT) CSC 2515: 5-Neural Networks 59 /58

