CSC2515 Lecture 7: PCA and K-Means

David Duvenaud

Based on Materials from Roger Grosse, University of Toronto

Overview

- Today: first examples of unsupervised learning algorithms.

Overview

- Today: first examples of unsupervised learning algorithms.
- Two traditional kinds of unsupervised learning:
- Dimensionality reduction: map high-dimensional inputs to a lower-dimensional space that summarizes the important factors of variation.
- Principal Component Analysis (PCA): mapping is a linear projection
- Deep autoencoders: mapping is nonlinear

Overview

- Today: first examples of unsupervised learning algorithms.
- Two traditional kinds of unsupervised learning:
- Dimensionality reduction: map high-dimensional inputs to a lower-dimensional space that summarizes the important factors of variation.
- Principal Component Analysis (PCA): mapping is a linear projection
- Deep autoencoders: mapping is nonlinear
- Clustering: group the data points into discrete clusters
- K-means (today): choose a set of cluster centers that minimize the Euclidean distance to the data points
- Mixture of Gaussians (future lecture): learn a more flexible set of clusters that fit the data distribution well
- Newer approach: Generative models: learn $p(x)$ and maybe sample from it, or $p\left(x_{1} \mid x_{2}\right)$ (e.g. GTP3, Dall-E)

Overview

- Today: first examples of unsupervised learning algorithms.
- Two traditional kinds of unsupervised learning:
- Dimensionality reduction: map high-dimensional inputs to a lower-dimensional space that summarizes the important factors of variation.
- Principal Component Analysis (PCA): mapping is a linear projection
- Deep autoencoders: mapping is nonlinear
- Clustering: group the data points into discrete clusters
- K-means (today): choose a set of cluster centers that minimize the Euclidean distance to the data points
- Mixture of Gaussians (future lecture): learn a more flexible set of clusters that fit the data distribution well
- Newer approach: Generative models: learn $p(x)$ and maybe sample from it, or $p\left(x_{1} \mid x_{2}\right)$ (e.g. GTP3, Dall-E)
- We'll end by introducing maximum likelihood, a general approach for fitting $p(x)$ to data samples.

Dimensionality Reduction

- Images are intrinsically low-dimensional. Consider MNIST.
- Input space: $28 \times 28=784$ pixel values
- A lower dimensional representation: describe the strokes using 20 or so control points, plus a few more parameters for thickness, etc.

Image credit: Nair and Hinton (2006)

- Can we learn low-dimensional representations directly from the data?

Dimensionality Reduction

- In dimensionality reduction, we try to learn a mapping to a lower dimensional space that preserves as much information as possible about the input.
- Motivations
- Save computation/memory
- Reduce overfitting
- Visualize in 2 dimensions

Dimensionality Reduction

Can be linear or nonlinear:

- Linear dimensionality reduction methods (e.g. PCA) are much simpler, and easier to get to work.
- But many kinds of transformations behave nonlinearly in image space (e.g. translation of an image).

Projection onto a Subspace

- Here, the columns of \mathbf{U} form an orthonormal basis for a subspace \mathcal{S}.
- The projection of a point \mathbf{x} onto \mathcal{S} is the point $\tilde{\mathbf{x}} \in \mathcal{S}$ closest to \mathbf{x}. In machine learning, $\tilde{\mathbf{x}}$ is also called the reconstruction of \mathbf{x}.
- \mathbf{z} is its representation, or code.

Projection onto a Subspace

- If we have a K-dimensional subspace in a D-dimensional input space, then $\mathbf{x} \in \mathbb{R}^{D}$ and $\mathbf{z} \in \mathbb{R}^{K}$.
- If the data points \mathbf{x} all lie close to the subspace, then we can approximate distances, dot products, etc. in terms of these same operations on the code vectors \mathbf{z}.
- If $K \ll D$, then it's much cheaper to work
 with \mathbf{z} than \mathbf{x}.

Learning a Subspace

- Which of the following subspaces is a better representation of the dataset?

Learning a Subspace

- Which of the following subspaces is a better representation of the dataset?

- On average, the data points are closer to \mathcal{S}_{2} than to \mathcal{S}_{1}.
- The projections onto \mathcal{S}_{2} are more spread out than the projections onto \mathcal{S}_{1}.

Learning a Subspace

- How to choose a good subspace \mathcal{S} ?
- Need to choose a vector $\boldsymbol{\mu}$ and a $D \times K$ matrix \mathbf{U} with orthonormal columns.
- Set $\boldsymbol{\mu}$ to the mean of the data, $\boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$

Learning a Subspace

- How to choose a good subspace \mathcal{S} ?
- Need to choose a vector $\boldsymbol{\mu}$ and a $D \times K$ matrix \mathbf{U} with orthonormal columns.
- Set $\boldsymbol{\mu}$ to the mean of the data, $\boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$
- Two criteria:
- Minimize the reconstruction error

$$
\min \frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\tilde{\mathbf{x}}^{(i)}\right\|^{2}
$$

Learning a Subspace

- How to choose a good subspace \mathcal{S} ?
- Need to choose a vector $\boldsymbol{\mu}$ and a $D \times K$ matrix \mathbf{U} with orthonormal columns.
- Set $\boldsymbol{\mu}$ to the mean of the data, $\boldsymbol{\mu}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}$
- Two criteria:
- Minimize the reconstruction error

$$
\min \frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\tilde{\mathbf{x}}^{(i)}\right\|^{2}
$$

- Maximize the variance of the code vectors

$$
\begin{aligned}
\max \sum_{j} \operatorname{Var}\left(z_{j}\right) & =\frac{1}{N} \sum_{j} \sum_{i}\left(z_{j}^{(i)}-\bar{z}_{j}\right)^{2} \\
& =\frac{1}{N} \sum_{i}\left\|\mathbf{z}^{(i)}-\overline{\mathbf{z}}\right\|^{2}
\end{aligned}
$$

$$
=\frac{1}{N} \sum_{i}\left\|\mathbf{z}^{(i)}\right\|^{2} \quad \text { Exercise: show } \overline{\mathbf{z}}=0
$$

- Note: here, $\overline{\mathbf{z}}$ denotes the mean, not a derivative.

Learning a Subspace

- These two criteria are equivalent! I.e., we'll show

$$
\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\tilde{\mathbf{x}}^{(i)}\right\|^{2}=\mathrm{const}-\frac{1}{N} \sum_{i}\left\|\mathbf{z}^{(i)}\right\|^{2}
$$

Learning a Subspace

- These two criteria are equivalent! I.e., we'll show

$$
\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\tilde{\mathbf{x}}^{(i)}\right\|^{2}=\text { const }-\frac{1}{N} \sum_{i}\left\|\mathbf{z}^{(i)}\right\|^{2}
$$

- Observation: by unitarity,

$$
\left\|\tilde{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right\|=\left\|\mathbf{U} \mathbf{z}^{(i)}\right\|=\left\|\mathbf{z}^{(i)}\right\|
$$

Learning a Subspace

- These two criteria are equivalent! I.e., we'll show

$$
\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\tilde{\mathbf{x}}^{(i)}\right\|^{2}=\mathrm{const}-\frac{1}{N} \sum_{i}\left\|\mathbf{z}^{(i)}\right\|^{2}
$$

- Observation: by unitarity,

$$
\left\|\tilde{\mathbf{x}}^{(i)}-\boldsymbol{\mu}\right\|=\left\|\mathbf{U} \mathbf{z}^{(i)}\right\|=\left\|\mathbf{z}^{(i)}\right\|
$$

- By the Pythagorean Theorem,

Principal Component Analysis

Choosing a subspace to maximize the projected variance, or minimize the reconstruction error, is called principal component analysis (PCA).

Recall:

- Spectral Decomposition: a symmetric matrix A has a full set of eigenvectors, which can be chosen to be orthogonal. This gives a decomposition

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top},
$$

where \mathbf{Q} is orthogonal and $\boldsymbol{\Lambda}$ is diagonal. The columns of \mathbf{Q} are eigenvectors, and the diagonal entries λ_{j} of $\boldsymbol{\Lambda}$ are the corresponding eigenvalues.

- I.e., symmetric matrices are diagonal in some basis.
- A symmetric matrix \mathbf{A} is positive semidefinite iff each $\lambda_{j} \geq 0$.

Principal Component Analysis

- Consider the empirical covariance matrix:

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{\top}
$$

- Recall: Covariance matrices are symmetric and positive semidefinite.

Principal Component Analysis

- Consider the empirical covariance matrix:

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{\top}
$$

- Recall: Covariance matrices are symmetric and positive semidefinite.
- The optimal PCA subspace is spanned by the top K eigenvectors of $\boldsymbol{\Sigma}$.
- More precisely, choose the first K of any orthonormal eigenbasis for $\boldsymbol{\Sigma}$.
- The general case is tricky, but we'll show this for $K=1$.
- These eigenvectors are called principal components, analogous to the principal axes of an ellipse.

Deriving PCA

- For $K=1$, we are fitting a unit vector \mathbf{u}, and the code is a scalar $z=\mathbf{u}^{\top}(\mathbf{x}-\boldsymbol{\mu})$.
$\frac{1}{N} \sum_{i}\left[z^{(i)}\right]^{2}=\frac{1}{N} \sum_{i}\left(\mathbf{u}^{\top}\left(\mathbf{x}^{(i)}-\mu\right)\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{N} \sum_{i=1}^{N} \mathbf{u}^{\top}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{\top} \mathbf{u} \\
& =\mathbf{u}^{\top}\left[\frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)\left(\mathbf{x}^{(i)}-\boldsymbol{\mu}\right)^{\top}\right] \mathbf{u} \\
& =\mathbf{u}^{\top} \boldsymbol{\Sigma} \mathbf{u} \\
& =\mathbf{u}^{\top} \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\top} \mathbf{u} \\
& =\mathbf{a}^{\top} \mathbf{\Lambda} \mathbf{a}
\end{aligned}
$$

Spectral Decomposition for $\mathbf{a}=\mathbf{Q}^{\top} \mathbf{u}$

Deriving PCA

- Maximize $\mathbf{a}^{\top} \boldsymbol{\Lambda} \mathbf{a}=\sum_{j=1}^{D} \lambda_{j} a_{j}^{2}$ for $\mathbf{a}=\mathbf{Q}^{\top} \mathbf{u}$.
- This is a change-of-basis to the eigenbasis of $\boldsymbol{\Sigma}$.
- Assume the λ_{i} are in sorted order. For simplicity, assume they are all distinct.

Deriving PCA

- Maximize $\mathbf{a}^{\top} \boldsymbol{\Lambda} \mathbf{a}=\sum_{j=1}^{D} \lambda_{j} a_{j}^{2}$ for $\mathbf{a}=\mathbf{Q}^{\top} \mathbf{u}$.
- This is a change-of-basis to the eigenbasis of $\boldsymbol{\Sigma}$.
- Assume the λ_{i} are in sorted order. For simplicity, assume they are all distinct.
- Observation: since \mathbf{u} is a unit vector, then by unitarity, \mathbf{a} is also a unit vector. I.e., $\sum_{j} a_{j}^{2}=1$.

Deriving PCA

- Maximize $\mathbf{a}^{\top} \boldsymbol{\Lambda} \mathbf{a}=\sum_{j=1}^{D} \lambda_{j} a_{j}^{2}$ for $\mathbf{a}=\mathbf{Q}^{\top} \mathbf{u}$.
- This is a change-of-basis to the eigenbasis of $\boldsymbol{\Sigma}$.
- Assume the λ_{i} are in sorted order. For simplicity, assume they are all distinct.
- Observation: since \mathbf{u} is a unit vector, then by unitarity, \mathbf{a} is also a unit vector. I.e., $\sum_{j} a_{j}^{2}=1$.
- By inspection, set $a_{1}= \pm 1$ and $a_{j}=0$ for $j \neq 1$.
- Hence, $\mathbf{u}=\mathbf{Q a}= \pm \mathbf{q}_{1}$ (the top eigenvector).

Deriving PCA

- Maximize $\mathbf{a}^{\top} \boldsymbol{\Lambda} \mathbf{a}=\sum_{j=1}^{D} \lambda_{j} a_{j}^{2}$ for $\mathbf{a}=\mathbf{Q}^{\top} \mathbf{u}$.
- This is a change-of-basis to the eigenbasis of $\boldsymbol{\Sigma}$.
- Assume the λ_{i} are in sorted order. For simplicity, assume they are all distinct.
- Observation: since \mathbf{u} is a unit vector, then by unitarity, \mathbf{a} is also a unit vector. I.e., $\sum_{j} a_{j}^{2}=1$.
- By inspection, set $a_{1}= \pm 1$ and $a_{j}=0$ for $j \neq 1$.
- Hence, $\mathbf{u}=\mathbf{Q a}= \pm \mathbf{q}_{1}$ (the top eigenvector).
- A similar argument shows that the k th principal component is the k th eigenvector of $\boldsymbol{\Sigma}$. If you're interested, look up the Courant-Fischer Theorem.

Decorrelation

- Interesting fact: the dimensions of \mathbf{z} are decorrelated. For now, let Cov denote the empirical covariance.

$$
\begin{array}{rlr}
\operatorname{Cov}(\mathbf{z}) & =\operatorname{Cov}\left(\mathbf{U}^{\top}(\mathbf{x}-\boldsymbol{\mu})\right) \\
& =\mathbf{U}^{\top} \operatorname{Cov}(\mathbf{x}) \mathbf{U} & \\
& =\mathbf{U}^{\top} \mathbf{\Sigma} \mathbf{U} & \\
& =\mathbf{U}^{\top} \mathbf{Q} \boldsymbol{\wedge} \mathbf{Q}^{\top} \mathbf{U} & \text { by orthogonality } \\
& =\left(\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right) \boldsymbol{\Lambda}\binom{\mathbf{I}}{\mathbf{0}} \quad \\
& =\text { top left } K \times K \text { block of } \boldsymbol{\Lambda} &
\end{array}
$$

- If the covariance matrix is diagonal, this means the features are uncorrelated.
- This is why PCA was originally invented (in 1901!).

Recap

Recap:

- Dimensionality reduction aims to find a low-dimensional representation of the data.
- PCA projects the data onto a subspace which maximizes the projected variance, or equivalently, minimizes the reconstruction error.
- The optimal subspace is given by the top eigenvectors of the empirical covariance matrix.
- PCA gives a set of decorrelated features.

Applying PCA to faces: Learned basis

Principal components of face images ("eigenfaces")

Applying PCA to digits

Autoencoders and Nonlinear Dimensionality Reduction

Autoencoders

- An autoencoder is a feed-forward neural net whose job it is to take an input \mathbf{x} and predict \mathbf{x}.
- To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.

Linear Autoencoders

Why autoencoders?

- Map high-dimensional data to two dimensions for visualization
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
- Unlabled data can be much more plentiful than labeled data

Linear Autoencoders

- The simplest kind of autoencoder has one hidden layer, linear activations, and squared error loss.

$$
\mathcal{L}(\mathbf{x}, \tilde{\mathbf{x}})=\|\mathbf{x}-\tilde{\mathbf{x}}\|^{2}
$$

- This network computes $\tilde{\mathbf{x}}=\mathbf{W}_{2} \mathbf{W}_{1} \mathbf{x}$, which is a linear function.
- If $K \geq D$, we can choose \mathbf{W}_{2} and \mathbf{W}_{1} such
 that $\mathbf{W}_{2} \mathbf{W}_{1}$ is the identity matrix. This isn't very interesting.
- But suppose $K<D$:
- \mathbf{W}_{1} maps x to a K-dimensional space, so it's doing dimensionality reduction.

Linear Autoencoders

- Observe that the output of the autoencoder must lie in a K-dimensional subspace spanned by the columns of \mathbf{W}_{2}.
- We saw that the best possible K-dimensional subspace in terms of reconstruction error is the PCA subspace.

Linear Autoencoders

- Observe that the output of the autoencoder must lie in a K-dimensional subspace spanned by the columns of \mathbf{W}_{2}.
- We saw that the best possible K-dimensional subspace in terms of reconstruction error is the PCA subspace.
- The autoencoder can achieve this by setting $\mathbf{W}_{1}=\mathbf{U}^{\top}$ and $\mathbf{W}_{2}=\mathbf{U}$.
- Therefore, the optimal weights for a linear autoencoder are just the principal components!

Nonlinear Autoencoders

- Deep nonlinear autoencoders learn to project the data, not onto a subspace, but onto a nonlinear manifold
- This manifold is the image of the decoder.
- This is a kind of nonlinear dimensionality reduction.

Nonlinear Autoencoders

- Nonlinear autoencoders can learn more powerful codes for a given dimensionality, compared with linear autoencoders (PCA)

Nonlinear Autoencoders

Here's a 2-dimensional autoencoder representation of newsgroup articles. They're color-coded by topic, but the algorithm wasn't given the labels.

Clustering and K-Means

Clustering

- Sometimes the data form clusters, where examples within a cluster are similar to each other, and examples in different clusters are dissimilar:

- Such a distribution is multimodal, since it has multiple modes, or regions of high probability mass.
- Grouping data points into clusters, with no labels, is called clustering
- E.g. clustering machine learning papers based on topic (deep learning, Bayesian models, etc.)
- This is an overly simplistic model - more on that later

Clustering

- Assume the data $\left\{\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(N)}\right\}$ lives in a Euclidean space, $\mathbf{x}^{(n)} \in \mathbb{R}^{d}$.
- Assume the data belongs to K classes (patterns)
- Assume the data points from same class are similar, i.e. close in Euclidean distance.
- How can we identify those classes (data points that belong to each class)?

K-means intuition

- K-means assumes there are k clusters, and each point is close to its cluster center (the mean of points in the cluster).
- If we knew the cluster assignment we could easily compute means.
- If we knew the means we could easily compute cluster assignment.
- Chicken and egg problem!
- Can show it is NP hard.
- Very simple (and useful) heuristic - start randomly and alternate between the two!

K-means

- Initialization: randomly initialize cluster centers

K-means

- Initialization: randomly initialize cluster centers
- The algorithm iteratively alternates between two steps:
- Assignment step: Assign each data point to the closest cluster

K-means

- Initialization: randomly initialize cluster centers
- The algorithm iteratively alternates between two steps:
- Assignment step: Assign each data point to the closest cluster
- Refitting step: Move each cluster center to the center of gravity of the data assigned to it

Figure from Bishop

K-means Objective

What is actually being optimized?

K-means Objective

What is actually being optimized?

K-means Objective:
Find cluster centers \mathbf{m} and assignments \mathbf{r} to minimize the sum of squared distances of data points $\left\{\mathbf{x}^{(n)}\right\}$ to their assigned cluster centers

$$
\begin{array}{r}
\min _{\{\mathbf{m}\},\{\mathbf{r}\}} J(\{\mathbf{m}\},\{\mathbf{r}\})=\min _{\{\mathbf{m}\},\{\mathbf{r}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{k}^{(n)}\left\|\mathbf{m}_{k}-\mathbf{x}^{(n)}\right\|^{2} \\
\text { s.t. } \sum_{k} r_{k}^{(n)}=1, \forall n, \text { where } \quad r_{k}^{(n)} \in\{0,1\}, \forall k, n
\end{array}
$$

where $r_{k}^{(n)}=1$ means that $\mathbf{x}^{(n)}$ is assigned to cluster k (with center \mathbf{m}_{k})

K-means Objective

What is actually being optimized?
K-means Objective:
Find cluster centers \mathbf{m} and assignments \mathbf{r} to minimize the sum of squared distances of data points $\left\{\mathbf{x}^{(n)}\right\}$ to their assigned cluster centers

$$
\begin{array}{r}
\min _{\{\mathbf{m}\},\{\mathbf{r}\}} J(\{\mathbf{m}\},\{\mathbf{r}\})=\min _{\{\mathbf{m}\},\{\mathbf{r}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{k}^{(n)}\left\|\mathbf{m}_{k}-\mathbf{x}^{(n)}\right\|^{2} \\
\text { s.t. } \sum_{k} r_{k}^{(n)}=1, \forall n, \text { where } \quad r_{k}^{(n)} \in\{0,1\}, \forall k, n
\end{array}
$$

where $r_{k}^{(n)}=1$ means that $\mathbf{x}^{(n)}$ is assigned to cluster k (with center \mathbf{m}_{k})

- Optimization method is a form of coordinate descent (" block coordinate descent")
- Fix centers, optimize assignments (choose cluster whose mean is closest)
- Fix assignments, optimize means (average of assigned datapoints)

The K-means Algorithm

- Initialization: Set K cluster means $\mathbf{m}_{1}, \ldots, \mathbf{m}_{K}$ to random values
- Repeat until convergence (until assignments do not change):
- Assignment: Each data point $\mathbf{x}^{(n)}$ assigned to nearest mean

$$
\hat{k}^{n}=\arg \min _{k} d\left(\mathbf{m}_{k}, \mathbf{x}^{(n)}\right)
$$

(with, for example, L2 norm: $\hat{k}^{n}=\arg \min _{k}\left\|\mathbf{m}_{k}-\mathbf{x}^{(n)}\right\|^{2}$) and Responsibilities (1-hot encoding)

$$
r_{k}^{(n)}=1 \longleftrightarrow \hat{k}^{(n)}=k
$$

- Refitting: Model parameters, means are adjusted to match sample means of data points they are responsible for:

$$
\mathbf{m}_{k}=\frac{\sum_{n} r_{k}^{(n)} \mathbf{x}^{(n)}}{\sum_{n} r_{k}^{(n)}}
$$

K-means for Vector Quantization

Figure from Bishop

K-means for Image Segmentation

- How would you modify k-means to get superpixels?

Why K-means Converges

- Whenever an assignment is changed, the sum squared distances J of data points from their assigned cluster centers is reduced.
- Whenever a cluster center is moved, J is reduced.
- Test for convergence: If the assignments do not change in the assignment step, we have converged (to at least a local minimum).

- K-means cost function after each E step (blue) and M step (red). The algorithm has converged after the third M step

Local Minima

- The objective J is non-convex (so coordinate descent on J is not guaranteed to converge to the global minimum)
- There is nothing to prevent k-means getting stuck at local minima.
- We could try many random starting points
- We could try non-local split-and-merge moves:
- Simultaneously merge two nearby clusters
- and split a big cluster into two

Soft K-means

- Instead of making hard assignments of data points to clusters, we can make soft assignments. One cluster may have a responsibility of .7 for a datapoint and another may have a responsibility of .3 .
- Allows a cluster to use more information about the data in the refitting step.
- What happens to our convergence guarantee?
- How do we decide on the soft assignments?

Soft K-means Algorithm

- Initialization: Set K means $\left\{\mathbf{m}_{k}\right\}$ to random values
- Repeat until convergence (until assignments do not change):
- Assignment: Each data point n given soft "degree of assignment" to each cluster mean k, based on responsibilities

$$
r_{k}^{(n)}=\frac{\exp \left[-\beta d\left(\mathbf{m}_{k}, \mathbf{x}^{(n)}\right)\right]}{\sum_{j} \exp \left[-\beta d\left(\mathbf{m}_{j}, \mathbf{x}^{(n)}\right)\right]}
$$

- Refitting: Model parameters, means, are adjusted to match sample means of datapoints they are responsible for:

$$
\mathbf{m}_{k}=\frac{\sum_{n} r_{k}^{(n)} \mathbf{x}^{(n)}}{\sum_{n} r_{k}^{(n)}}
$$

Probabilistic Models and Maximum Likelihood

Maximum Likelihood

- PCA and K-Means are procedures that capture particular types of structure.
- Recall: unifying picture of supervised learning in terms of models, loss functions, and optimization algorithms
- Probabilistic models play an analogous role for unsupervised learning (and sometimes supervised learning as well).
- Treat the quantities of interest as random variables, and specify the form of their probabilistic dependencies.
- Infer unknown quantities from the observations by performing probabilistic inference.
- Today: maximum likelihood, which is one tool we need for fitting probabilistic models.

Maximum Likelihood

- Motivating example: estimating the parameter of a biased coin
- You flip a coin 100 times. It lands heads $N_{H}=55$ times and tails $N_{T}=45$ times.
- What is the probability it will come up heads if we flip again?
- Model: flips are independent Bernoulli random variables with parameter θ.
- Assume the observations are independent and identically distributed (i.i.d.)

Maximum Likelihood

- The likelihood function is the probability of the observed data, as a function of θ.
- In our case, it's the probability of a particular sequence of H's and T's.
- Under the Bernoulli model with i.i.d. observations,

$$
L(\theta)=p(\mathcal{D})=\theta^{N_{H}}(1-\theta)^{N_{T}}
$$

- This takes very small values (in this case, $\left.L(0.5)=0.5^{100} \approx 7.9 \times 10^{-31}\right)$
- Therefore, we usually work with log-likelihoods:

$$
\ell(\theta)=\log L(\theta)=N_{H} \log \theta+N_{T} \log (1-\theta)
$$

- Here, $\ell(0.5)=\log 0.5^{100}=100 \log 0.5=-69.31$

Maximum Likelihood

$$
N_{H}=55, N_{T}=45
$$

Maximum Likelihood

- Good values of θ should assign high probability to the observed data. This motivates the maximum likelihood criterion.
- Remember how we found the optimal solution to linear regression by setting derivatives to zero? We can do that again for the coin example.

$$
\begin{aligned}
\frac{\mathrm{d} \ell}{\mathrm{~d} \theta} & =\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(N_{H} \log \theta+N_{T} \log (1-\theta)\right) \\
& =\frac{N_{H}}{\theta}-\frac{N_{T}}{1-\theta}
\end{aligned}
$$

- Setting this to zero gives the maximum likelihood estimate:

$$
\hat{\theta}_{\mathrm{ML}}=\frac{N_{H}}{N_{H}+N_{T}}
$$

Maximum Likelihood

- This is equivalent to minimizing cross-entropy. Let $t_{i}=1$ for heads and $t_{i}=0$ for tails.

$$
\begin{aligned}
\mathcal{L}_{C E} & =-\sum_{i} t_{i} \log \theta-\left(1-t_{i}\right) \log (1-\theta) \\
& =-N_{H} \log \theta-N_{T} \log (1-\theta) \\
& =-\ell(\theta)
\end{aligned}
$$

Maximum Likelihood

- Recall the Gaussian, or normal, distribution:

$$
\mathcal{N}(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- The Central Limit Theorem says that sums of lots of independent random variables are approximately Gaussian.
- In machine learning, we use Gaussians a lot because they make
 the calculations easy.

Maximum Likelihood

- Suppose we want to model the distribution of temperatures in Toronto in March, and we've recorded the following observations:

$$
\begin{array}{lllllll}
-2.5 & -9.9 & -12.1 & -8.9 & -6.0 & -4.8 & 2.4
\end{array}
$$

- Assume they're drawn from a Gaussian distribution with known standard deviation $\sigma=5$, and we want to find the mean μ.
- Log-likelihood function:

$$
\begin{aligned}
\ell(\mu) & =\log \prod_{i=1}^{N}\left[\frac{1}{\sqrt{2 \pi} \cdot \sigma} \exp \left(-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2 \pi} \cdot \sigma} \exp \left(-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}\right)\right] \\
& =\sum_{i=1}^{N} \underbrace{-\frac{1}{2} \log 2 \pi-\log \sigma}_{\text {constant! }}-\frac{\left(x^{(i)}-\mu\right)^{2}}{2 \sigma^{2}}
\end{aligned}
$$

Maximum Likelihood

- Maximize the log-likelihood by setting the derivative to zero:

$$
\begin{aligned}
0=\frac{\mathrm{d} \ell}{\mathrm{~d} \mu} & =-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N} \frac{\mathrm{~d}}{\mathrm{~d} \mu}\left(x^{(i)}-\mu\right)^{2} \\
& =\frac{1}{\sigma^{2}} \sum_{i=1}^{N} x^{(i)}-\mu
\end{aligned}
$$

- Solving we get $\hat{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum_{i=1}^{N} x^{(i)}$
- This is just the mean of the observed values, or the empirical mean.

Maximum Likelihood

- In general, we don't know the true standard deviation σ, but we can solve for it as well.
- Set the partial derivatives to zero, just like in linear regression.

$$
\begin{aligned}
0=\frac{\partial \ell}{\partial \mu} & =-\frac{1}{\sigma^{2}} \sum_{i=1}^{N} x^{(i)}-\mu \\
0=\frac{\partial \ell}{\partial \sigma} & =\frac{\partial}{\partial \sigma}\left[\sum_{i=1}^{N}-\frac{1}{2} \log 2 \pi-\log \sigma-\frac{1}{2 \sigma^{2}}\left(x^{(i)}-\mu\right)^{2}\right] \\
& =\sum_{i=1}^{N}-\frac{1}{2} \frac{\partial}{\partial \sigma} \log 2 \pi-\frac{\partial}{\partial \sigma} \log \sigma-\frac{\partial}{\partial \sigma} \frac{1}{2 \sigma}\left(x^{(i)}-\mu\right)^{2} \\
& =\sum_{i=1}^{N} 0-\frac{1}{\sigma}+\frac{1}{\sigma^{3}}\left(x^{(i)}-\mu\right)^{2} \\
& =-\frac{N}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{N}\left(x^{(i)}-\mu\right)^{2}
\end{aligned}
$$

Maximum Likelihood

- Sometimes there is no closed-form solution. E.g., consider the gamma distribution, whose PDF is

$$
p(x)=\frac{b^{a}}{\Gamma(a)} x^{a-1} e^{-b x}
$$

where Γ is the gamma function, a generalization of the factorial function to continuous values.

- There is no closed-form solution, but we can still optimize the log-likelihood using gradient ascent.

Maximum Likelihood

- So far, maximum likelihood has told us to use empirical counts or statistics:
- Bernoulli: $\hat{\theta}_{\mathrm{ML}}=\frac{N_{H}}{N_{H}+N_{T}}$
- Gaussian: $\hat{\mu}_{\mathrm{ML}}=\frac{1}{N} \sum x^{(i)}, \hat{\sigma}_{\mathrm{ML}}^{2}=\frac{1}{N} \sum\left(x^{(i)}-\hat{\mu}_{\mathrm{ML}}\right)^{2}$
- This doesn't always happen; the class of probability distributions that have this property is exponential families.

Maximum Likelihood

We've been doing maximum likelihood estimation all along!

- Squared error loss (e.g. linear regression)

$$
\begin{aligned}
p(t \mid y) & =\mathcal{N}\left(t ; y, \sigma^{2}\right) \\
-\log p(t \mid y) & =\frac{1}{2 \sigma^{2}}(y-t)^{2}+\mathrm{const}
\end{aligned}
$$

- Cross-entropy loss (e.g. logistic regression)

$$
\begin{aligned}
p(t=1 \mid y) & =y \\
-\log p(t \mid y) & =-t \log y-(1-t) \log (1-y)
\end{aligned}
$$

