CSC2515 Lecture 8:

Intro to Generative Models

David Duvenaud

Based on Materials from Roger Grosse, University of Toronto
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Project outline

March 15: Detailed project instructions released. After HW4 all
remaining office hours are for project help.

April 1: Project proposals due. Hand in earlier for earlier feedback.

April 9: Project presentations (About 5 min). Don't have to be
finished, just prelim results.

April 15: Projects due
Groups of up to 3. Example / default projects will be provided.
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Project type 1: Understanding

@ Reproduce the experimental results from some existing papers.
Perform sensitivity analysis on hyper-parameters.

@ Apply / extend existing algorithms to a new application / task /
dataset.
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Project type 2: Exploratory research

e Improve / fix an existing algorithm. Evaluate the improvement on
benchmark environments.

@ Develop novel model architectures / algorithms to a new application
/ area / environment.

@ You are welcome to do a project related to your research. In this case,
your project proposal and final report must each clearly explain the
relationship to your research, what work was already done prior to the
course, and what work (if any) was done by people not on the project
team. Our expectations will be higher in this case.
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Today's Agenda

@ Bayesian parameter estimation: average predictions over all
hypotheses, proportional to their posterior probability.

@ Generative classification: learn to model the distributions of inputs
belonging to each class

o Naive Bayes (discrete inputs)
o Gaussian Discriminant Analysis (continuous inputs)
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Data Sparsity

@ Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?
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Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

e E.g., what if you flip the coin twice and get H both times?

Ny +Nr 240

O, 1

@ Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

If you observe a single T in the test set, the log-likelihood is —oc.
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as

well.
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Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as
well.
@ To define a Bayesian model, we need to specify two distributions:
e The prior distribution p(8), which encodes our beliefs about the

parameters before we observe the data
e The likelihood p(D | @), same as in maximum likelihood

) CSC2515 Lec8 7/55



Bayesian Parameter Estimation

@ In maximum likelihood, the observations are treated as random
variables, but the parameters are not.
@ The Bayesian approach treats the parameters as random variables as
well.
@ To define a Bayesian model, we need to specify two distributions:
e The prior distribution p(8), which encodes our beliefs about the
parameters before we observe the data
e The likelihood p(D | @), same as in maximum likelihood
@ When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes' Rule:

_ w0)p(D]0)
POIP) = T o@e(D]0) a8

@ We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

@ Let's revisit the coin example. We already know the likelihood:
L(8) = p(D) = 0"(1 = 0)""

e It remains to specify the prior p(0).
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Bayesian Parameter Estimation

@ Let's revisit the coin example. We already know the likelihood:
L(8) = p(D) = 0"(1 = 0)""

e It remains to specify the prior p(0).
e We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
e But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

Ma+ b)

p(6; a, b) = (2T ()

01— 0)""1

e This notation for proportionality lets us ignore the normalization
constant:

p(6; a, b) o< H271(1 — )1,
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Bayesian Parameter Estimation

@ Beta distribution for various values of a, b:
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@ Some observations:

o The expectation E[f] = a/(a + b).
o The distribution gets more peaked when a and b are large.
e The uniform distribution is the special case where a = b = 1.

@ The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

@ Computing the posterior distribution:

p(0|D) o< p(0)p(D | 0)
oc [93—1(1 - e)b—l] [9’\’”(1 - e)NT}

— 93_1+NH(1 . e)b—l—l-NT‘

@ This is just a beta distribution with parameters Ny + a and Nt + b.
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Bayesian Parameter Estimation

@ Computing the posterior distribution:

p(0|D) o< p(0)p(D | 0)
<x [93—1(1 Afe)b—l] [9””(1 Afe)NT}

— 93_1+NH(1 . e)b—l—l-NT‘

@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 0 is:

Ny + a

E[§| D] =
017] Ny + Nt +a+b
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Bayesian Parameter Estimation

@ Computing the posterior distribution:
p(6|D) x p(0)p(D|6)
oc [93—1(1 - e)b—l] [9’\’”(1 - e)NT}
— (93_1+NH(1 . e)b—l—l-NT‘
@ This is just a beta distribution with parameters Ny + a and Nt + b.
@ The posterior expectation of 0 is:

Ny + a
Ny + Nt +a+b

E[6|D] =

@ The parameters a and b of the prior can be thought of as
pseudo-counts.

o The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it's very
useful.
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting

Ny=2 N7t =0

3.0

— Prior
2.5|| — Likelihood

— Posterior
2.0
15
1.0|
0.5
0'8.0 0.2 0.4 0.6 0.8 1.0
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Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting Large data setting
Ny=2 Nr=0 Ny =55, Nt =45
3.0 9
— Prior — Prior
55| — Likelihood 8/l — Likelihood
—— Posterior 7| — Posterior
2.0 6
5
1.5 A
1.0| 3
2
0.5 1
%80 02 04 06 08 1.0 80 02 04 06 08 10

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D'[D) = [ p(61D) (D' 6)db. (1)
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Bayesian Parameter Estimation

@ What do we actually do with the posterior?

@ The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D'[D) = [ p(61D) (D' 6)db. (1)

@ For the coin flip example:

Opred = Pr(x' =H|D)
= /p(@\D)Pr(xl =H|0)de
= /Beta(6‘; Ny + a, Nt + b) - 6d0

= EBeta(;Ny+a,N7+5)[0]
Ny + a
= — ) 2
Ny+ Nt +a+b 2)
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Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

@ Assume observations are

i.i.d. Gaussian with known 0.5

standard deviation o and — Prior
unknown mean u — Posterior
0.20 — Posterior predictive

@ Broad Gaussian prior over p,

centered at 0 0.15
@ We can compute the posterior

and posterior predictive 0.10

distributions analytically (full

derivation in notes) 0.05
@ Why is the posterior predictive 000

distribution more spread out than =20 -15 -10 -5 o0 5 10 15 20
the posterior distribution?

Intro ML (UofT) 13/55




Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation
@ Some advantages of the Bayesian approach

o More robust to data sparsity
o Incorporate prior knowledge
e Smooth the predictions by averaging over plausible explanations
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation
@ Some advantages of the Bayesian approach

o More robust to data sparsity
o Incorporate prior knowledge
e Smooth the predictions by averaging over plausible explanations

@ Problem: maximum likelihood is an optimization problem, while
Bayesian parameter estimation is an integration problem

e This means maximum likelihood is much easier in practice, since we
can just do gradient descent

e Automatic differentiation packages make it really easy to compute
gradients

e There aren't any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)
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Maximum A-Posteriori Estimation

@ Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

@ This converts the Bayesian parameter estimation problem into a
maximization problem

Oniap = arg max p(6|D)
= argmax p(0) p(D|9)

= arg max log p(0) + log p(D | 0)
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(6, D) = log p(¢) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Nw +a—1)log0 + (Nt + b — 1) log(1 — 0)
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Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(6, D) = log p(¢) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Nw +a—1)log0 + (Nt + b — 1) log(1 — 0)

@ Maximize by finding a critical point

NH+a—1 NT+b—1

d
0= —logp(0,D) = 7 10

de

T C) CSC2515 Lec8 16 /55



Maximum A-Posteriori Estimation

@ Joint probability in the coin flip example:

log p(6, D) = log p(¢) + log p(D | 0)
= const + (a—1)logf + (b — 1) log(1l — 0) + Ny log 6 + Nt log(1 — 0)
= const + (Nw +a—1)log0 + (Nt + b — 1) log(1 — 0)

@ Maximize by finding a critical point

d NH+a—1 NT+b—1
== D) = -
0= 5logp(6.D) 7 10
@ Solving for 6,
~ Ny+a—1
Ovap =

Ny+Nr+a+b—-2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula Ny=2,Nr =0 Ny =55 Ny =45

Orie Nt 1 2 =0.55
Opred  WhaTS 4 ~0.67 57~ 0.548
Oarr At 3 -0.75 56~ 0.549

Oniap assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations

0.08 0.08
— maximum likelihood — maximum likelihood

0.07] — full Bayesian 0.07 — full Bayesian
0.06 — MAP 0.06 — MAP
0.05 0.05
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
000 =15 =5 =5 0 5 10 15 20 0005 =16 5 6 5 10 15 20
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Generative Classifiers and Naive Bayes
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Generative vs. Discriminative

Two approaches to classification:

Discriminative Generative
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Generative vs. Discriminative

Two approaches to classification:
@ Discriminative: directly learn to predict t as a function of x.

o Sometimes this means modeling p(t|x) (e.g. logistic regression).
e Sometimes this means learning a decision rule without a probabilistic
interpretation (e.g. KNN, SVM).

@ Generative: model the data distribution for each class separately, and make
predictions using posterior inference.

o Fit models of p(t) and p(x]|t).
o Infer the posterior p(t|x) using Bayes’ Rule.
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Bayes Classifier

@ Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes' Rule:

class .
likelihood Pprior

posterior —— N

— p(x|t) p(t
T _ P (1)
p(x)
—~—
normalizing
constant

@ Requires fitting p(x | t) and p(t)
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Bayes Classifier

@ Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes' Rule:

class .
likelihood Pprior

posterior —— N

— p(x|t) p(t
T _ P (1)
p(x)
—~—
normalizing
constant

@ Requires fitting p(x | t) and p(t)

@ How can we compute p(x) for binary classification?
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Bayes Classifier

@ Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes' Rule:

class .
likelihood Pprior

posterior —— N

— p(x|t) p(t
T _ P (1)
p(x)
—~—
normalizing
constant

@ Requires fitting p(x | t) and p(t)

@ How can we compute p(x) for binary classification?
p(x) = p(x | £ = 0) Pr(t = 0) + p(x| ¢ = 1) Pr(t = 1)

@ Note: sometimes it's more convenient to just compute the numerator and
normalize.
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e Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

o Use bag-of-words features, i.e. a binary vector x where entry x; = 1 if
word j appeared in the email. (Assume a dictionary of D words.)
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e Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

o Use bag-of-words features, i.e. a binary vector x where entry x; = 1 if
word j appeared in the email. (Assume a dictionary of D words.)

e Estimating the prior p(t) is easy (e.g. maximum likelihood).

e Problem: p(x|t) is a joint distribution over D binary random
variables, which requires 2P entries to specify directly!
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e Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

o Use bag-of-words features, i.e. a binary vector x where entry x; = 1 if
word j appeared in the email. (Assume a dictionary of D words.)
e Estimating the prior p(t) is easy (e.g. maximum likelihood).
e Problem: p(x|t) is a joint distribution over D binary random
variables, which requires 2P entries to specify directly!
@ We'd like to impose structure on the distribution such that:
e it can be compactly represented
e learning and inference are both tractable
@ Probabilistic graphical models are a powerful and wide-ranging class
of techniques for doing this. We'll just scratch the surface here, but
you'll learn about them in detail in CSC2506.
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e Naive Bayes makes the assumption that the word features x; are
conditionally independent given the class t.
o This means x; and x; are independent under the conditional
distribution p(x | t).
o Note: this doesn't mean they're independent. (E.g., “Viagra" and
"cheap” are correlated insofar as they both depend on t.)
e Mathematically, this means the distribution factorizes:

p(t,x, ..., xp) = p(t) p(xa [ t) - p(xp | t).
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e Naive Bayes makes the assumption that the word features x; are
conditionally independent given the class t.
o This means x; and x; are independent under the conditional
distribution p(x | t).
o Note: this doesn't mean they're independent. (E.g., “Viagra" and
"cheap” are correlated insofar as they both depend on t.)
e Mathematically, this means the distribution factorizes:

p(t,x, ..., xp) = p(t) p(xa [ t) - p(xp | t).

@ Compact representation of the joint distribution
o Prior probability of class: Pr(t =1) = ¢
o Conditional probability of word feature given class: Pr(x; = 1|t) =0},
e 2D + 1 parameters total
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Bayes Nets (Optional)

@ We can represent this model using an directed graphical model, or
Bayesian network:

@ This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

@ Intuitively, you can think of the edges as reflecting a causal structure.
But mathematically, we can't infer causality without additional
assumptions.

@ You'll learn a lot about graphical models in CSC2506.
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Naive Bayes: Learning

@ The parameters can be learned efficiently because the log-likelihood
decomposes into independent terms for each feature.

)+ Z log p(x" | )

Il
i Mz i
o
®
o
~—~
~

D N
Zlogp(t(’)) +3° S logp(x | 7
i=1 i=1

j=1

—_———— N e
Bernoulli log-likelihood Bernoulli log-likelihood
of labels for feature x;

@ Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Naive Bayes: Learning

e Want to maximize Zf\lzl log p(xj(a | (D)

@ This is a minor variant of our coin flip example. Let
0. = PI‘(Xj = a| t = b) Note 615 = 1 — Ogp.
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Naive Bayes: Learning

e Want to maximize Z, 1 log p( \ t()

@ This is a minor variant of our coin flip example. Let
0. = PI‘(XJ' = a| t = b) Note 615 = 1 — Ogp.
o Log-likelihood:

N N N
Z log p(xj(') |t = Z t(')xj(') log 611 + Z t(1 - xj(')) log(1 — 611)
i1 i=1

i=1

+Z(1 ()Iog01o+z — t)(1 — x7) log(1 - 10)
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Naive Bayes: Learning

e Want to maximize Z, 1 log p( \ t()

@ This is a minor variant of our coin flip example. Let
0. = PI‘(XJ' = a| t = b) Note 615 = 1 — Ogp.
o Log-likelihood:

N N N
Z log p(xj(') |t = Z t(')xj(') log 611 + Z t(1 - xj(')) log(1 — 611)
i1 i=1

i=1

+Z(1 ()Iog01o+z — t)(1 — x7) log(1 - 10)

@ Obtain maximum likelihood estimates by setting derivatives to zero:

N11 N1o

th1 = 57— bo=—71—
N11 + N01 NlO + NOO
where N, is the counts for x; = a and t = b.
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Naive Bayes: Inference

@ We predict the category by performing inference in the model.
@ Apply Bayes’ Rule:
t)p(x|t
10 =
PO ps 1)
> p(t) [1721 PO | ¥)

@ We need not compute the denominator if we're simply trying to
determine the mostly likely t.

@ Shorthand notation:
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

) CSC2515 Lec8 29 /55



Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)]|x].
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)]|x].

@ Examples

e Squared error loss: choose y, = E[t|x]
o 0-1 loss: choose the most likely category
o Cross-entropy loss: return the probability y = Pr(t = 1]|x)
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)]|x].

@ Examples

e Squared error loss: choose y, = E[t|x]
0-1 loss: choose the most likely category
Cross-entropy loss: return the probability y = Pr(t = 1]|x)

Asymmetric loss (e.g. false positives are much worse than false
negatives for spam filtering): apply a threshold other than 0.5.
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Naive Bayes: Decisions

@ Once we compute p(t|x), what do we do with it?

@ Sometimes we want to make a single prediction or decision y. This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

o Define a loss function £(y, t) and choose y, = arg min, E[L(y, t)]|x].
@ Examples

e Squared error loss: choose y, = E[t|x]
0-1 loss: choose the most likely category
Cross-entropy loss: return the probability y = Pr(t = 1]|x)
Asymmetric loss (e.g. false positives are much worse than false
negatives for spam filtering): apply a threshold other than 0.5.
@ Warning: this is theoretically tidy, but doesn't really work unless you're
careful to obtain calibrated posterior probabilities.
o “Calibrated” means all the times you predict (say) Pr(t = k|x) = 0.9
should be correct 90% on average.
o Naive Bayes is generally not calibrated due to the “naive” conditional
independence assumption.
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o Naive Bayes is an amazingly cheap learning algorithm!
@ Training time: estimate parameters using maximum likelihood

o Compute co-occurrence counts of each feature with the labels.
e Requires only one pass through the data!

@ Test time: apply Bayes' Rule

o Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)
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Naive Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood
o Compute co-occurrence counts of each feature with the labels.
e Requires only one pass through the data!

Test time: apply Bayes' Rule

o Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis easily
extends to other probability distributions.

@ Unfortunately, it's usually less accurate in practice compared to
discriminative models.

o The problem is the “naive” independence assumption.
o We're covering it primarily as a stepping stone towards latent variable
models.
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Gaussian Discriminant Analysis
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@ Generative models — model p(t) and p(x| t)
@ Recall that p(x|t = k) may be very complex

p(x1, -+, xp|t) = plxa|xe,---,xp,t) - p(xp_1|xp, t)p(xp | t)
o Naive Bayes used a conditional independence assumption to make

everything tractable.

@ For continuous inputs, we can instead make it tractable by using a
simple distribution: multivariate Gaussians.

) CSC2515 Lec8 32/55



Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

10 20 30 40 50 80 70

@ How can we model p(x |t = k)? Multivariate Gaussian
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Multivariate Parameters

@ Mean
H1
p=E[x] =
HD

@ Covariance

0} o012 -+ O
. o2 03 -+ O

X =Cov(x) = E[(x — p) ' (x — )] = _
Op1 Op2 i Oh

@ These statistics uniquely define a multivariate Gaussian distribution. (This is

not true for distributions in general!)
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Multivariate Gaussian Distribution

@ x ~ N(u, X), a multivariate Gaussian (or multivariate normal) distribution
is defined as

P = Gy & |0 ) =k )

///Il'“ MNG
70N
AR

o/
W/
/7//0,

N
R i, SN
Wity "’

N
JESEN

@ Mahalanobis distance (x — p) T X7} (x — p1) measures the distance from x to
p in a space stretched according to .
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Bivariate Gaussian

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Gaussian

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Gaussian

Cov(xy,x2) =0 Cov(x1,x2) >0 Cov(x1,x2) <0

Probability Density

Figure: Probability density function
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Figure: Contour plot of the pdf
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Bivariate Gaussian

Cov(x1,x2)=0, Var(x|)=var(x2) Cov(xl.xz):O. Var(x1 )>Var(x2]

: >

Cov(x1.x2)>0 Cov(x1)<2)<0
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Bivariate Gaussian

Cov(x1,x2)=0, Var(xI ):Var(xz) Cov(x1,x2)=0, Var(x1)>Var(x2)

7 ;,’;,'
A
7 "‘;‘:'mm'.',','.l.

X X

Cov(x1,x2)>0 Cov(x1.x2)<0
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Gaussian Discriminant Analysis

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution:
1 1 Ts-—1
p(x|t=k)= WGXP *E(X =) B (x )

where |X,| denotes the determinant of the matrix.
@ Each class k has associated mean vector p, and covariance matrix Xy

@ How many parameters?
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Gaussian Discriminant Analysis

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution:

1 _
exp | —5(x — Hk)T}:k 1(X — Hi)

p(x|t = k) = >

1
(27)D/2| % [1/2
where |X,| denotes the determinant of the matrix.
@ Each class k has associated mean vector p, and covariance matrix Xy

@ How many parameters?

o Each p, has D parameters, for DK total.
o Each X, has O(D?) parameters, for O(D?K) — could be hard to
estimate (more on that later).
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GDA: Learning

@ Learn the parameters for each class using maximum likelihood

@ For simplicity, assume binary classification
p(t|¢) =o' (1—9) "

@ You can compute the ML estimates in closed form (¢ and p, are easy, Xy is
tricky)

1~ ()
¢ = N;ﬁ

Zfil r/Ei) - x()

K = N i
Zi:lrlg)
1 &K o, ,
S = =g 2o O — ) (<D — )T
dimi e i
A= 1t = k]
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GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with Bayes'
Rule:
ot — PO P[0
S p(t) p(x | )

@ Plug in the Gaussian p(x | t):

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
= 2 log(2r) — 4 log [Tl — 5 x — 1) TE (x — i) +
+ log p(t«) — log p(x)
@ Decision boundary:
(x = ) TE(x = ) = (x = 1) TE; H(x — ) + Const

@ What's the shape of the boundary?
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GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with Bayes'
Rule:
ot — PO P[0
S p(t) p(x | )

@ Plug in the Gaussian p(x | t):

log p(tk|x) = logp(x|tk) + log p(tx) — log p(x)
= 2 log(2r) — 4 log [Tl — 5 x — 1) TE (x — i) +
+ log p(t«) — log p(x)
@ Decision boundary:
(x = ) TE(x = ) = (x = 1) TE; H(x — ) + Const

@ What's the shape of the boundary?

e We have a quadratic function in x, so the decision boundary is a conic
section!
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ecision Boundary

01

0.05

p(xIC,)

discriminant:
P(t;|x)=0.5

posterior for t,

45 /55
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GDA Decision Boundary

@ Our equation for the decision boundary:
(x = ) TE (= p) = (x = ) TE; H(x — pag) + Conmst
@ Expand the product and factor out constants (w.r.t. x):
xTZ 2uk): x:xTZ x—2uZZle+Const

@ What if all classes share the same covariance X7?
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GDA Decision Boundary

@ Our equation for the decision boundary:
(x = ) TE (= p) = (x = ) TE; H(x — pag) + Conmst
@ Expand the product and factor out constants (w.r.t. x):
xTZ 2u )3 x:xTZ x—2u >, Ix + Const

@ What if all classes share the same covariance X7?
o We get a linear decision boundary!

—2pul T = 2u22_1x+Const
(g — ) "E " Ix = Const
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GDA Decision Boundary: Shared Covariances

variances may be
different
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GDA vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
3, =2%; =%, you will find that it looks like this:

1
~ 1+exp(—wTx— b)

p(t | Xa ¢7 HOHU'D z)

where (w, b) are chosen based on (¢, pg, 41, X).

@ Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)
o If it’s not true, the quality of the predictions might suffer.
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GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)
o If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

o When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

) CSC2515 Lec8 49 /55



GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

o If this is true, GDA is asymptotically efficient (best model in limit of
large N)
o If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

o When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

@ What if x is high-dimensional?

o The X have O(D?K) parameters, which can be a problem if D is
large.

o We already saw we can save some a factor of K by using a shared
covariance for the classes.

e Any other idea you can think of?
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Gaussian Naive Bayes

@ What if x is high-dimensional?

o The X have O(D?K) parameters, which can be a problem if D is
large.

o We already saw we can save some a factor of K by using a shared
covariance for the classes.

e Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class

D

p(x|t=K) =] |t = k)

j=1

@ Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?
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Gaussian Naive Bayes

@ What if x is high-dimensional?

o The X have O(D?K) parameters, which can be a problem if D is
large.

o We already saw we can save some a factor of K by using a shared
covariance for the classes.

e Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class

D

p(x|t=K) =] |t = k)

Jj=1
@ Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

o This is equivalent to assuming the x; are uncorrelated, i.e. X is
diagonal.
e Hence, only D parameters for X!
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Gaussian Naive Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are Gaussian:

1 — (% — wi)?
| t=k)= L
P IE= = s ex"[ 207,

(this is just a 1-dim Gaussian, one for each input dimension)
@ Model the same as GDA with diagonal covariance matrix

@ Maximum likelihood estimate of parameters

N (@
Zi:lr/E)Xj()

Hjk = NG
Dim1 r,E )
N,
02— 2im1 r,E : (XJ( ) i)’
jk N i
dim1 rIE)
rD = 1) =k

) CSC2515 Lec8 51 /55



Decision Boundary: Isotropic

@ We can go even further and assume the covariances are spherical, or
isotropic.

@ In this case: ¥ = o2l (just need one parameter!)

@ Going back to the class posterior for GDA:

log p(t|x) = logp(x|tk) + log p(tx) — log p(x)

D 1 1 _
) log(27) — 2 log || — E(X — ) E (= ) +
+ log p(tx) — log p(x)

@ Suppose for simplicity that p(t) is uniform. Plugging in £ = ol and
simplifying a bit,

o8 p(t4 | ) — log p(tr |x) = 55 [(x— 1) (x — ) — (x— 1) (x — )]

1
= — 5 [l = gl = [ = gae ]
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Decision Boundary: Isotropic

@ The decision boundary bisects the class means!
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)
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