
CSC2515 Lecture 8:
Intro to Generative Models

David Duvenaud

Based on Materials from Roger Grosse, University of Toronto

Intro ML (UofT) CSC2515 Lec8 1 / 55



Project outline

March 15: Detailed project instructions released. After HW4 all
remaining office hours are for project help.

April 1: Project proposals due. Hand in earlier for earlier feedback.

April 9: Project presentations (About 5 min). Don’t have to be
finished, just prelim results.

April 15: Projects due

Groups of up to 3. Example / default projects will be provided.
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Project type 1: Understanding

Reproduce the experimental results from some existing papers.
Perform sensitivity analysis on hyper-parameters.

Apply / extend existing algorithms to a new application / task /
dataset.
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Project type 2: Exploratory research

Improve / fix an existing algorithm. Evaluate the improvement on
benchmark environments.

Develop novel model architectures / algorithms to a new application
/ area / environment.

You are welcome to do a project related to your research. In this case,
your project proposal and final report must each clearly explain the
relationship to your research, what work was already done prior to the
course, and what work (if any) was done by people not on the project
team. Our expectations will be higher in this case.
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Today’s Agenda

Bayesian parameter estimation: average predictions over all
hypotheses, proportional to their posterior probability.

Generative classification: learn to model the distributions of inputs
belonging to each class

Näıve Bayes (discrete inputs)
Gaussian Discriminant Analysis (continuous inputs)
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Data Sparsity

Maximum likelihood has a pitfall: if you have too little data, it can
overfit.

E.g., what if you flip the coin twice and get H both times?

θML =
NH

NH + NT
=

2

2 + 0
= 1

Because it never observed T, it assigns this outcome probability 0.
This problem is known as data sparsity.

If you observe a single T in the test set, the log-likelihood is −∞.
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Bayesian Parameter Estimation

In maximum likelihood, the observations are treated as random
variables, but the parameters are not.

The Bayesian approach treats the parameters as random variables as
well.

To define a Bayesian model, we need to specify two distributions:

The prior distribution p(θ), which encodes our beliefs about the
parameters before we observe the data
The likelihood p(D |θ), same as in maximum likelihood

When we update our beliefs based on the observations, we compute
the posterior distribution using Bayes’ Rule:

p(θ | D) =
p(θ)p(D |θ)∫

p(θ′)p(D |θ′)dθ′
.

We rarely ever compute the denominator explicitly.
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Bayesian Parameter Estimation

Let’s revisit the coin example. We already know the likelihood:

L(θ) = p(D) = θNH (1− θ)NT

It remains to specify the prior p(θ).

We can choose an uninformative prior, which assumes as little as
possible. A reasonable choice is the uniform prior.
But our experience tells us 0.5 is more likely than 0.99. One
particularly useful prior that lets us specify this is the beta distribution:

p(θ; a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1− θ)b−1.

This notation for proportionality lets us ignore the normalization
constant:

p(θ; a, b) ∝ θa−1(1− θ)b−1.
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Bayesian Parameter Estimation

Beta distribution for various values of a, b:

Some observations:

The expectation E[θ] = a/(a + b).
The distribution gets more peaked when a and b are large.
The uniform distribution is the special case where a = b = 1.

The main thing the beta distribution is used for is as a prior for the Bernoulli
distribution.
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Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

The parameters a and b of the prior can be thought of as
pseudo-counts.

The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it’s very
useful.

Intro ML (UofT) CSC2515 Lec8 10 / 55



Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

The parameters a and b of the prior can be thought of as
pseudo-counts.

The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it’s very
useful.

Intro ML (UofT) CSC2515 Lec8 10 / 55



Bayesian Parameter Estimation

Computing the posterior distribution:

p(θ | D) ∝ p(θ)p(D |θ)

∝
[
θa−1(1− θ)b−1

] [
θNH (1− θ)NT

]
= θa−1+NH (1− θ)b−1+NT .

This is just a beta distribution with parameters NH + a and NT + b.

The posterior expectation of θ is:

E[θ | D] =
NH + a

NH + NT + a + b

The parameters a and b of the prior can be thought of as
pseudo-counts.

The reason this works is that the prior and likelihood have the same
functional form. This phenomenon is known as conjugacy, and it’s very
useful.

Intro ML (UofT) CSC2515 Lec8 10 / 55



Bayesian Parameter Estimation

Bayesian inference for the coin flip example:

Small data setting
NH = 2, NT = 0

Large data setting
NH = 55, NT = 45

When you have enough observations, the data overwhelm the prior.
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Bayesian Parameter Estimation

What do we actually do with the posterior?

The posterior predictive distribution is the distribution over future
observables given the past observations. We compute this by
marginalizing out the parameter(s):

p(D′ | D) =

∫
p(θ | D) p(D′ |θ) dθ. (1)

For the coin flip example:

θpred = Pr(x ′ = H | D)

=

∫
p(θ | D)Pr(x ′ = H | θ)dθ

=

∫
Beta(θ;NH + a,NT + b) · θ dθ

= EBeta(θ;NH+a,NT+b)[θ]

=
NH + a

NH + NT + a + b
, (2)
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Bayesian Parameter Estimation

Bayesian estimation of the mean temperature in Toronto

Assume observations are
i.i.d. Gaussian with known
standard deviation σ and
unknown mean µ

Broad Gaussian prior over µ,
centered at 0

We can compute the posterior
and posterior predictive
distributions analytically (full
derivation in notes)

Why is the posterior predictive
distribution more spread out than
the posterior distribution?
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Bayesian Parameter Estimation

Comparison of maximum likelihood and Bayesian parameter estimation

Some advantages of the Bayesian approach

More robust to data sparsity
Incorporate prior knowledge
Smooth the predictions by averaging over plausible explanations

Problem: maximum likelihood is an optimization problem, while
Bayesian parameter estimation is an integration problem

This means maximum likelihood is much easier in practice, since we
can just do gradient descent
Automatic differentiation packages make it really easy to compute
gradients
There aren’t any comparable black-box tools for Bayesian parameter
estimation (although Stan can do quite a lot)
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Maximum A-Posteriori Estimation

Maximum a-posteriori (MAP) estimation: find the most likely
parameter settings under the posterior

This converts the Bayesian parameter estimation problem into a
maximization problem

θ̂MAP = arg max
θ

p(θ | D)

= arg max
θ

p(θ) p(D |θ)

= arg max
θ

log p(θ) + log p(D |θ)
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Maximum A-Posteriori Estimation

Joint probability in the coin flip example:

log p(θ,D) = log p(θ) + log p(D | θ)

= const + (a− 1) log θ + (b − 1) log(1− θ) + NH log θ + NT log(1− θ)

= const + (NH + a− 1) log θ + (NT + b − 1) log(1− θ)

Maximize by finding a critical point

0 =
d

dθ
log p(θ,D) =

NH + a− 1

θ
− NT + b − 1

1− θ

Solving for θ,

θ̂MAP =
NH + a− 1

NH + NT + a + b − 2
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Maximum A-Posteriori Estimation

Comparison of estimates in the coin flip example:

Formula NH = 2,NT = 0 NH = 55,NT = 45

θ̂ML
NH

NH+NT
1 55

100 = 0.55

θpred
NH+a

NH+NT+a+b
4
6 ≈ 0.67 57

104 ≈ 0.548

θ̂MAP
NH+a−1

NH+NT+a+b−2
3
4 = 0.75 56

102 ≈ 0.549

θ̂MAP assigns nonzero probabilities as long as a, b > 1.
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Maximum A-Posteriori Estimation

Comparison of predictions in the Toronto temperatures example

1 observation 7 observations
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Generative Classifiers and Näıve Bayes
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Generative vs. Discriminative

Two approaches to classification:

Intro ML (UofT) CSC2515 Lec8 20 / 55



Generative vs. Discriminative

Two approaches to classification:

Discriminative: directly learn to predict t as a function of x.

Sometimes this means modeling p(t | x) (e.g. logistic regression).
Sometimes this means learning a decision rule without a probabilistic
interpretation (e.g. KNN, SVM).

Generative: model the data distribution for each class separately, and make
predictions using posterior inference.

Fit models of p(t) and p(x | t).
Infer the posterior p(t | x) using Bayes’ Rule.
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Bayes Classifier

Bayes classifier: given features x, we compute the posterior class
probabilities using Bayes’ Rule:

posterior︷ ︸︸ ︷
p(t | x) =

class
likelihood︷ ︸︸ ︷
p(x | t)

prior︷︸︸︷
p(t)

p(x)︸︷︷︸
normalizing
constant

Requires fitting p(x | t) and p(t)

How can we compute p(x) for binary classification?

p(x) = p(x | t = 0)Pr(t = 0) + p(x | t = 1)Pr(t = 1)

Note: sometimes it’s more convenient to just compute the numerator and
normalize.
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Näıve Bayes

Example: want to classify emails into spam (t = 1) or non-spam
(t = 0) based on the words they contain.

Use bag-of-words features, i.e. a binary vector x where entry xj = 1 if
word j appeared in the email. (Assume a dictionary of D words.)

Estimating the prior p(t) is easy (e.g. maximum likelihood).

Problem: p(x | t) is a joint distribution over D binary random
variables, which requires 2D entries to specify directly!

We’d like to impose structure on the distribution such that:

it can be compactly represented
learning and inference are both tractable

Probabilistic graphical models are a powerful and wide-ranging class
of techniques for doing this. We’ll just scratch the surface here, but
you’ll learn about them in detail in CSC2506.

Intro ML (UofT) CSC2515 Lec8 23 / 55
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Näıve Bayes

Näıve Bayes makes the assumption that the word features xj are
conditionally independent given the class t.

This means xi and xj are independent under the conditional
distribution p(x | t).
Note: this doesn’t mean they’re independent. (E.g., “Viagra” and
”cheap” are correlated insofar as they both depend on t.)
Mathematically, this means the distribution factorizes:

p(t, x1, . . . , xD) = p(t) p(x1 | t) · · · p(xD | t).

Compact representation of the joint distribution

Prior probability of class: Pr(t = 1) = φ
Conditional probability of word feature given class: Pr(xj = 1 | t) = θjt
2D + 1 parameters total
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Bayes Nets (Optional)

We can represent this model using an directed graphical model, or
Bayesian network:

This graph structure means the joint distribution factorizes as a
product of conditional distributions for each variable given its
parent(s).

Intuitively, you can think of the edges as reflecting a causal structure.
But mathematically, we can’t infer causality without additional
assumptions.

You’ll learn a lot about graphical models in CSC2506.
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Näıve Bayes: Learning

The parameters can be learned efficiently because the log-likelihood
decomposes into independent terms for each feature.

`(θ) =
N∑
i=1

log p(t(i), x(i))

=
N∑
i=1

log p(t(i))
D∏
j=1

p(x
(i)
j | t

(i))

=
N∑
i=1

[
log p(t(i)) +

D∑
j=1

log p(x
(i)
j | t

(i))

]

=
N∑
i=1

log p(t(i))︸ ︷︷ ︸
Bernoulli log-likelihood

of labels

+
D∑
j=1

N∑
i=1

log p(x
(i)
j | t

(i))︸ ︷︷ ︸
Bernoulli log-likelihood

for feature xj

Each of these log-likelihood terms depends on different sets of
parameters, so they can be optimized independently.
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Näıve Bayes: Learning

Want to maximize
∑N

i=1 log p(x
(i)
j | t(i))

This is a minor variant of our coin flip example. Let
θab = Pr(xj = a | t = b). Note θ1b = 1− θ0b.

Log-likelihood:

N∑
i=1

log p(x
(i)
j | t

(i)) =
N∑
i=1

t(i)x
(i)
j log θ11 +

N∑
i=1

t(i)(1− x
(i)
j ) log(1− θ11)

+
N∑
i=1

(1− t(i))x
(i)
j log θ10 +

N∑
i=1

(1− t(i))(1− x
(i)
j ) log(1− θ10)

Obtain maximum likelihood estimates by setting derivatives to zero:

θ11 =
N11

N11 + N01
θ10 =

N10

N10 + N00

where Nab is the counts for xj = a and t = b.
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Näıve Bayes: Inference

We predict the category by performing inference in the model.

Apply Bayes’ Rule:

p(t | x) =
p(t) p(x | t)∑
t′ p(t ′) p(x | t ′)

=
p(t)

∏D
j=1 p(xj | t)∑

t′ p(t ′)
∏D

j=1 p(xj | t ′)

We need not compute the denominator if we’re simply trying to
determine the mostly likely t.

Shorthand notation:

p(t | x) ∝ p(t)
D∏
j=1

p(xj | t)
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Näıve Bayes: Decisions

Once we compute p(t | x), what do we do with it?

Sometimes we want to make a single prediction or decision y . This is
a decision theory problem, just like when we analyzed the
bias/variance/Bayes-error decomposition.

Define a loss function L(y , t) and choose y? = arg miny E[L(y , t) | x].

Examples

Squared error loss: choose y? = E[t | x]
0-1 loss: choose the most likely category
Cross-entropy loss: return the probability y = Pr(t = 1 | x)
Asymmetric loss (e.g. false positives are much worse than false
negatives for spam filtering): apply a threshold other than 0.5.

Warning: this is theoretically tidy, but doesn’t really work unless you’re
careful to obtain calibrated posterior probabilities.
“Calibrated” means all the times you predict (say) Pr(t = k | x) = 0.9
should be correct 90% on average.
Näıve Bayes is generally not calibrated due to the “näıve” conditional
independence assumption.
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Näıve Bayes

Näıve Bayes is an amazingly cheap learning algorithm!

Training time: estimate parameters using maximum likelihood

Compute co-occurrence counts of each feature with the labels.
Requires only one pass through the data!

Test time: apply Bayes’ Rule

Cheap because of the model structure. (For more general models,
Bayesian inference can be very expensive and/or complicated.)

We covered the Bernoulli case for simplicity. But our analysis easily
extends to other probability distributions.

Unfortunately, it’s usually less accurate in practice compared to
discriminative models.

The problem is the “näıve” independence assumption.
We’re covering it primarily as a stepping stone towards latent variable
models.
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Gaussian Discriminant Analysis
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Motivation

Generative models — model p(t) and p(x | t)

Recall that p(x | t = k) may be very complex

p(x1, · · · , xD | t) = p(x1 | x2, · · · , xD , t) · · · p(xD−1 | xD , t)p(xD | t)

Näıve Bayes used a conditional independence assumption to make
everything tractable.

For continuous inputs, we can instead make it tractable by using a
simple distribution: multivariate Gaussians.
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Classification: Diabetes Example

Observation per patient: White blood cell count & glucose value.

How can we model p(x | t = k)? Multivariate Gaussian

Intro ML (UofT) CSC2515 Lec8 33 / 55



Multivariate Parameters

Mean

µ = E[x] =

µ1

...
µD


Covariance

Σ = Cov(x) = E[(x− µ)>(x− µ)] =


σ2
1 σ12 · · · σ1D

σ12 σ2
2 · · · σ2D

...
...

. . .
...

σD1 σD2 · · · σ2
D


These statistics uniquely define a multivariate Gaussian distribution. (This is
not true for distributions in general!)
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Multivariate Gaussian Distribution

x ∼ N (µ,Σ), a multivariate Gaussian (or multivariate normal) distribution
is defined as

p(x) =
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)>Σ−1(x− µ)

]

Mahalanobis distance (x− µ)>Σ−1(x− µ) measures the distance from x to
µ in a space stretched according to Σ.
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Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
0.5 0
0 0.5

)
Σ =

(
2 0
0 2

)

Figure: Probability density function

Figure: Contour plot of the pdf

Intro ML (UofT) CSC2515 Lec8 36 / 55



Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
2 0
0 1

)
Σ =

(
1 0
0 2

)

Figure: Probability density function

Figure: Contour plot of the pdf

Intro ML (UofT) CSC2515 Lec8 37 / 55



Bivariate Gaussian

Σ =

(
1 0
0 1

)
Σ =

(
1 0.5

0.5 1

)
Σ =

(
1 0.8

0.8 1

)

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian

Cov(x1, x2) = 0 Cov(x1, x2) > 0 Cov(x1, x2) < 0

Figure: Probability density function

Figure: Contour plot of the pdf
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Bivariate Gaussian
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Bivariate Gaussian
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Gaussian Discriminant Analysis

Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

Multivariate Gaussian distribution:

p(x | t = k) =
1

(2π)D/2|Σk |1/2
exp

[
−1

2
(x− µk)TΣ−1k (x− µk)

]
where |Σk | denotes the determinant of the matrix.

Each class k has associated mean vector µk and covariance matrix Σk

How many parameters?

Each µk has D parameters, for DK total.
Each Σk has O(D2) parameters, for O(D2K ) — could be hard to
estimate (more on that later).
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GDA: Learning

Learn the parameters for each class using maximum likelihood

For simplicity, assume binary classification

p(t |φ) = φt(1− φ)1−t

You can compute the ML estimates in closed form (φ and µk are easy, Σk is
tricky)

φ =
1

N

N∑
i=1

r
(i)
1

µk =

∑N
i=1 r

(i)
k · x(i)∑N

i=1 r
(i)
k

Σk =
1∑N

i=1 r
(i)
k

N∑
i=1

r
(i)
k (x(i) − µk)(x(i) − µk)>

r
(i)
k = 1[t(i) = k]
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GDA Decision Boundary

Recall: for Bayes classifiers, we compute the decision boundary with Bayes’
Rule:

p(t | x) =
p(t) p(x | t)∑
t′ p(t ′) p(x | t ′)

Plug in the Gaussian p(x | t):

log p(tk |x) = log p(x|tk) + log p(tk)− log p(x)

= −D

2
log(2π)− 1

2
log |Σk | −

1

2
(x− µk)>Σ−1k (x− µk) +

+ log p(tk)− log p(x)

Decision boundary:

(x− µk)>Σ−1k (x− µk) = (x− µ`)
>Σ−1` (x− µ`) + Const

What’s the shape of the boundary?

We have a quadratic function in x, so the decision boundary is a conic
section!
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GDA Decision Boundary

likelihoods)

posterior)for)t1)

discriminant:!!
P!(t1|x")!=!0.5!
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GDA Decision Boundary

Our equation for the decision boundary:

(x− µk)>Σ−1k (x− µk) = (x− µ`)
>Σ−1` (x− µ`) + Const

Expand the product and factor out constants (w.r.t. x):

x>Σ−1k x− 2µ>k Σ−1k x = x>Σ−1` x− 2µ>` Σ−1` x + Const

What if all classes share the same covariance Σ?

We get a linear decision boundary!

−2µ>k Σ−1x = −2µ>` Σ−1x + Const

(µk − µ`)
>Σ−1x = Const
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GDA Decision Boundary: Shared Covariances

variances may be 
different 
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GDA vs Logistic Regression

Binary classification: If you examine p(t = 1 | x) under GDA and assume
Σ0 = Σ1 = Σ, you will find that it looks like this:

p(t | x, φ,µ0,µ1,Σ) =
1

1 + exp(−wTx− b)

where (w, b) are chosen based on (φ,µ0,µ1,Σ).

Same model as logistic regression!

Intro ML (UofT) CSC2515 Lec8 48 / 55



GDA vs Logistic Regression

When should we prefer GDA to LR, and vice versa?

GDA makes a stronger modeling assumption: assumes class-conditional data
is multivariate Gaussian

If this is true, GDA is asymptotically efficient (best model in limit of
large N)
If it’s not true, the quality of the predictions might suffer.

Many class-conditional distributions lead to logistic classifier.

When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

What if x is high-dimensional?

The Σk have O(D2K ) parameters, which can be a problem if D is
large.
We already saw we can save some a factor of K by using a shared
covariance for the classes.
Any other idea you can think of?

Naive Bayes: Assumes features independent given the class

p(x | t = k) =
D∏
j=1

p(xj | t = k)

Assuming likelihoods are Gaussian, how many parameters required for Naive
Bayes classifier?

This is equivalent to assuming the xj are uncorrelated, i.e. Σ is
diagonal.
Hence, only D parameters for Σ!
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Gaussian Näıve Bayes

Gaussian Näıve Bayes classifier assumes that the likelihoods are Gaussian:

p(xj | t = k) =
1√

2πσjk
exp

[
−(xj − µjk)2

2σ2
jk

]
(this is just a 1-dim Gaussian, one for each input dimension)

Model the same as GDA with diagonal covariance matrix

Maximum likelihood estimate of parameters

µjk =

∑N
i=1 r

(i)
k x

(i)
j∑N

i=1 r
(i)
k

σ2
jk =

∑N
i=1 r

(i)
k (x

(i)
j − µjk)2∑N

i=1 r
(i)
k

r
(i)
k = 1[t(i) = k]
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Decision Boundary: Isotropic

We can go even further and assume the covariances are spherical, or
isotropic.

In this case: Σ = σ2I (just need one parameter!)

Going back to the class posterior for GDA:

log p(tk |x) = log p(x | tk) + log p(tk)− log p(x)

= −D

2
log(2π)− 1

2
log |Σ−1k | −

1

2
(x− µk)>Σ−1k (x− µk) +

+ log p(tk)− log p(x)

Suppose for simplicity that p(t) is uniform. Plugging in Σ = σ2I and
simplifying a bit,

log p(tk | x)− log p(t` | x) = − 1

2σ2

[
(x− µk)>(x− µk)− (x− µ`)

>(x− µ`)
]

= − 1

2σ2

[
‖x− µk‖2 − ‖x− µ`‖2

]
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Decision Boundary: Isotropic

* ? 

The decision boundary bisects the class means!
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Example
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