CSC 2515 Lecture 9:
Reinforcement Learning

David Duvenaud
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CSC 2515: 9-Reinforcement Learning 1/44



Reinforcement Learning Problem

@ Recall: we categorized types of ML by how much information they
provide about the desired behavior.

e Supervised learning: labels of desired behavior
e Unsupervised learning: no labels
o Reinforcement learning: reward signal evaluating the outcome of

past actions

o In RL, we typically focus on sequential decision making: an agent
chooses a sequence of actions which each affect future possibilities
available to the agent.

@
An agent observes the takes an action and with the goal of
world its states changes achieving long-term
rewards.
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Reinforcement Learning

Most RL is done in a mathematical framework called a Markov Decision Process

(MDP).
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MDPs: States and Actions

e First let’s see how to describe the dynamics of the environment.

o The state is a description of the environment in sufficient detail to
determine its evolution.

e Think of Newtonian physics.
e Markov assumption: the state at time ¢t + 1 depends directly on the
state and action at time ¢, but not on past states and actions.

@ To describe the dynamics, we need to specify the transition
probabilities P(S¢t1 | St, At).

o In this lecture, we assume the state is fully observable, a highly
nontrivial assumption.
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MDPs: States and Actions

@ Suppose you're controlling a robot hand. What should be the set
of states and actions?
e states = sensor measurements, actions = actuator voltages?
e states = joint positions and velocities, actions = trajectory
keypoints?
o In general, the right granularity of states and actions depends on
what you're trying to achieve.
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MDPs: Policies

e The way the agent chooses the action in each step is called a
policy.
o We'll consider two types:
o Deterministic policy: A; = 7(S;) for some function 7: S — A
o Stochastic policy: A; ~ 7(-|St) for some function 7 : S — P(A).
(Here, P(A) is the set of distributions over actions.)

e With stochastic policies, the distribution over rollouts, or
trajectories, factorizes:

p(s1,a1,...,87,ar) =p(s1) m(a1|s1) P(sz2|s1,a1)w(az|s2) - P(sr|sr—1,ar—1) w(ar

e Note: the fact that policies need consider only the current state is
a powerful consequence of the Markov assumption and full
observability.

o If the environment is partially observable, then the policy needs to
depend on the history of observations.
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MDPs: Rewards

@ In each time step, the agent receives a reward from a distribution
that depends on the current state and action

Ry ~ R(-| St, At)

For simplicity, we’ll assume rewards are deterministic, i.e.

Rt = T(St, At)

What’s an example where R; should depend on A7

The return determines how good was the outcome of an episode.

e Undiscounted: G = Ry + R1 + Ry + - -+
o Discounted: G = Ry + YR; + v?Rs

The goal is to maximize the expected return, E[G].

v is a hyperparameter called the discount factor which determines
how much we care about rewards now vs. rewards later.

e What is the effect of large or small ~?
CSC 2515: 9-Reinforcement Learning 7 /44



MDPs: Rewards

e How might you define a reward function for an agent learning to
play a video game?
o Change in score (why not current score?)
o Some measure of novelty (this is sufficient for most Atari games!)
e Consider two possible reward functions for the game of Go. How
do you think the agent’s play will differ depending on the choice?
e Option 1: +1 for win, 0 for tie, -1 for loss
o Option 2: Agent’s territory minus opponent’s territory (at end)
e Specifying a good reward function can be tricky.
https://www.youtube.com/watch?v=t10IHko8ySg
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https://www.youtube.com/watch?v=tlOIHko8ySg

Markov Decision Processes

@ Putting this together, a Markov Decision Process (MDP) is defined by a
tuple (S, A, P, R,7).

S: State space. Discrete or continuous

o A: Action space. Here we consider finite action space, i.e.,
A= {al,...,a|A|}.

e P: Transition probability

e R: Immediate reward distribution

o 7: Discount factor (0 <~ < 1)

@ Together these define the environment that the agent operates in, and
the objectives it is supposed to achieve.
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Finding a Policy

o Now that we’ve defined MDPs, let’s see how to find a policy that
achieves a high return.
o We can distinguish two situations:

e Planning: given a fully specified MDP.
e Learning: agent interacts with an environment with unknown
dynamics.

o l.e., the environment is a black box that takes in actions and
outputs states and rewards.

e Which framework would be most appropriate for chess? Super
Mario?

CSC 2515: 9-Reinforcement Learning 10 /44



Value Functions
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Value Function

@ The value function V™ for a policy m measures the expected return if you
start in state s and follow policy .

V7(s) £ Ex[Gy| Sy = 5] =

Z’Y Rt+klst—8‘| .

k=0

@ This measures the desirability of state s.
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Value Function

Start
@ Rewards: —1 per time-step

@ Actions: N, E; S, W
@ States: Agent’s location

Goal

[Slide credit: D. Silver]
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Value Function

@ Arrows represent policy 7(s)
for each state s

Goal

[Slide credit: D. Silver]
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Value Function

@ Numbers represent value
V™ (s) of each state s

[Slide credit: D. Silver]
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Bellman equations

@ The foundation of many RL algorithms is the fact that value functions
satisfy a recursive relationship, called the Bellman equation:

Vﬂ-(S) = ]Eﬂ'[Gt | St = S]
=Ex[Rt + YGi41| St = 9]

:Zw(a s
:Zﬂ'(a|8 [ (s,a) +’yz73 "la,s) V7 (s")

@ Viewing V™ as a vector (where entries correspond to states), define the
Bellman backup operator T™.

(T™V)(s) 2 w(als) [ s,q) +WZ7’ "a,s) V(s

(s,a +'yz73 |a,s)E Gt+1|St+1—s]:|

a

@ The Bellman equation can be seen as a fixed point of the Bellman
operator:
Tvr =V~
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Value Function

A value function for golf:

VUputt

—O

-4

— Sutton and Barto, Reinforcement Learning: An Introduction
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State-Action Value Function

o A closely related but usefully different function is the state-action
value function, or Q-function, Q™ for policy =, defined as:

Q" (s,a) £ E, Z’Yth+k | St =s,Ar=a
k>0

o If you knew @™, how would you obtain V™7
Vi(s) =) m(als)Q(s,a).

o If you knew V™ how would you obtain Q77
o Apply a Bellman-like equation:

Q"(s,a) =r(s,a) +v Y P(s'|a,s) V(s

e This requires knowing the dynamics, so in general it’s not easy to
recover Q™ from V7.
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State-Action Value Function

e Q7 satisfies a Bellman equation very similar to V7 (proof is

analogous):
Q"(s,a) =r(s,a) +7 ) Pls'|a,5) Y m(d'|s)Q7(s,d)
2(T7Q™)(s,a)
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Dynamic Programming and Value Iteration
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Optimal State-Action Value Function

@ Suppose you're in state s. You get to pick one action a, and then
follow (fixed) policy 7 from then on. What do you pick?

argmax Q" (s, a)
a

o If a deterministic policy 7 is optimal, then it must be the case that
for any state s:
m(s) = argmax Q" (s, a),
a

otherwise you could improve the policy by changing m(s). (see
Sutton & Barto for a proper proof)
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Optimal State-Action Value Function

o Bellman equation for optimal policy 7*:
Q" (s,a) =r(s,a) +VZ7’ (s, |5,0)Q" (s, 7" (s))
(s,a +’yZp |s,a maxQ (s/,a')

e Now Q* = Q™" is the optimal state-action value function, and we
can rewrite the optimal Bellman equation without mentioning 7*:

Q" (s,a) =7(s,0) +7 Y _p(s'|5,0) max Q*(s', ')

Sl

2(T*Q*)(s,a)

e Turns out this is sufficient to characterize the optimal policy. So
we simply need to solve the fixed point equation T*Q* = Q*, and
then we can choose 7*(s) = arg max, Q*(s, a).
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Bellman Fixed Points

e So far: showed that some interesting problems could be reduced
to finding fixed points of Bellman backup operators:

o Evaluating a fixed policy =
QT = Q"
e Finding the optimal policy
T°Q* = Q*
o Idea: keep iterating the backup operator over and over again.

Q+T7Q (policy evaluation)
Q<+ TQ (finding the optimal policy)
o We're treating Q™ or @Q* as a vector with |S| - |.A| entries.

e This type of algorithm is an instance of dynamic programming.
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Bellman Fixed Points

e An operator f (mapping from vectors to vectors) is a contraction
map if
1 (x1) = f(x2)|| < erflx1 — %2
for some scalar 0 < av < 1 and vector norm || - ||.

o Let %) denote f iterated k times. A simple induction shows
£ ) = fP )] < ¥ i = x|
o Let x* be a fixed point of f. Then for any x,
1F 9 (x) = x| < aF[|x = x.|].

e Hence, iterated application of f, starting from any x, converges
exponentially to a unique fixed point.
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Finding the Optimal Value Function: Value Iteration

@ Let’s use dynamic programming to find Q*.

@ Value Iteration: Start from an initial function @);. For each k =1,2,...,
apply
Qrr1 < T7Qx,

@ Writing out the update in full,

Qri1(s,a) < r(s,a) + 'ys/%;s??(s'|s,a) max Qr(s',a")

@ Observe: a fixed point of this update is exactly a solution of the optimal
Bellman equation, which we saw characterizes the Q-function of an
optimal policy.
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Value Iteration

Q1’
: "1
1 T (or T7) 9

: ¢
Q-° T"Qo

Claim: The value iteration update is a contraction map:
[T*Q1 — T"Q2ll o < 711Q1 — Q2

|-l denotes the L> norm, defined as:

Il = max |
@ If this claim is correct, then value iteration converges exponentially to

the unique fixed point.

@ The exponential decay factor is v (the discount factor), which means
longer term planning is harder.
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Bellman Operator is a Contraction

[(T"Q1)(s,a) = (T"Q2)(s,a)| =

[ s,a +’yZP | s,a) male(s a)]

[r<s7 @) +7 Y P(s' |5, @) max Qa(s a’>} ’

s’

,a) {mé}XQI(S/, a’) — max Qa(s’, a/)} ‘

<SPG |y @) max| @ (5',0') — Qs (50|

< ymax |Qi(s',a') — Qa(s',a)| > P(s'| 5, a)
’a‘ s,
= ymax |Qi(s',a') — Qa(s', )|
=7Q1 — Q2
@ This is true for any (s, a), so

IT"Q1 — T Qa2 . <YIIQ1 — Q2| ,
which is what we wanted to show.
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Value Iteration Recap

@ So far, we’ve focused on planning, where the dynamics are known.

The optimal Q-function is characterized in terms of a Bellman
fixed point update.

Since the Bellman operator is a contraction map, we can just keep
applying it repeatedly, and we’ll converge to a unique fixed point.
@ What are the limitations of value iteration?

e assumes known dynamics
e requires explicitly representing Q* as a vector

@ |S| can be extremely large, or infinite
o |A| can be infinite (e.g. continuous voltages in robotics)

e But value iteration is still a foundation for a lot of more practical
RL algorithms.
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Towards Learning

o Now let’s focus on reinforcement learning, where the
environment is unknown. How can we apply learning?

@ Learn a model of the environment, and do planning in the model
(i.e. model-based reinforcement learning)

@ You already know how to do this in principle, but it’s very hard to
get to work. Not covered in this course.

@ Learn a value function (e.g. Q-learning, covered in this lecture)
@ Learn a policy directly (e.g. policy gradient, not covered in this
course)
e How can we deal with extremely large state spaces?

e Function approximation: choose a parametric form for the policy
and/or value function (e.g. linear in features, neural net, etc.)
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Q-Learning
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Monte Carlo Estimation

@ Recall the optimal Bellman equation:
Q*(Sa a) = T(Sv a) + ’Y]E’P(s’ | s,a) [m@x Q*(S/a a/)

@ Problem: we need to know the dynamics to evaluate the expectation

@ Monte Carlo estimation of an expectation p = E[X]: repeatedly sample
X and update
p= p+ (X —p)

@ Idea: Apply Monte Carlo estimation to the Bellman equation by
sampling S’ ~ P(-| s,a) and updating:

Q(s,a) + Q(s,a) + oz[r(s, a) + ’ymﬁXQ(S’, a) —Q(s,a)

= Bellman error

@ This is an example of temporal difference learning, i.e. updating our
predictions to match our later predictions (once we have more
information).
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Monte Carlo Estimation

o Problem: Every iteration of value iteration requires updating )
for every state.

e There could be lots of states
o We only observe transitions for states that are visited
o Idea: Have the agent interact with the environment, and only
update @ for the states that are actually visited.

o Problem: We might never visit certain states if they don’t look
promising, so we’ll never learn about them.

o Idea: Have the agent sometimes take random actions so that it
eventually visits every state.
o e-greedy policy: a policy which picks arg max, Q(s,a) with
probability 1 — e and a random action with probability e. (Typical
value: € = 0.05)

e Combining all three ideas gives an algorithm called Q-learning.
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Q-Learning with e-Greedy Policy

@ Parameters:
e Learning rate o
e Exploration parameter
o Initialize Q(s,a) for all (s,a) € S x A
@ The agent starts at state Sp.
@ For time step t =0,1, ...,
o Choose A; according to the e-greedy policy, i.e.,

A argmax, e 4 @ (S, a) with probability 1 — &
! Uniformly random action in A with probability &

Take action A; in the environment.

The state changes from S; to Si11 ~ P(+|St, Ar)

Observe Sy;11 and Ry (could be (S, A¢), or could be stochastic)
Update the action-value function at state-action (St, Ay):

Q(St, A) + Q(St, Ay) + o | Ry + ngeaﬁQ(StH’@/) — QS Ayr)
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Exploration vs. Exploitation

The e-greedy is a simple mechanism for managing the
exploration-exploitation tradeoff.
(5:0) argmax, ¢ 4 Q(S, a) with probability 1 — e
Te (9 = . . . -
: Uniformly random action in A with probability
@ The e-greedy policy ensures that most of the time (probability 1 — &) the
agent exploits its incomplete knowledge of the world by chooses the best

action (i.e., corresponding to the highest action-value), but occasionally
(probability €) it explores other actions.

@ Without exploration, the agent may never find some good actions.

@ The e-greedy is one of the simplest, but widely used, methods for
trading-off exploration and exploitation. Exploration-exploitation
tradeoff is an important topic of research.
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Examples of Exploration-Exploitation in the Real World

@ Restaurant Selection

e Exploitation: Go to your favourite restaurant
e Exploration: Try a new restaurant

@ Online Banner Advertisements

e Exploitation: Show the most successful advert
o Exploration: Show a different advert

@ Oil Drilling

e Exploitation: Drill at the best known location
e Exploration: Drill at a new location

@ Game Playing

e Exploitation: Play the move you believe is best
e Exploration: Play an experimental move

[Slide credit: D. Silver]
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An Intuition on Why Q-Learning Works? (Optional)

o Consider a tuple (S, A, R, S’). The Q-learning update is
Q(S,4) - Q(S.4) + | Bt 1 QS ) - (5.4

@ To understand this better, let us focus on its stochastic equilibrium, i.e.,
where the expected change in Q(S, A) is zero. We have

B[R4y QLS ) - QS )5 4] =0
=(T"Q)(S,4) = Q(S, 4)
@ So at the stochastic equilibrium, we have (T*Q)(S, A) = Q(S, A4).

Because the fixed-point of the Bellman optimality operator is unique
(and is @*), @ is the same as the optimal action-value function Q*.
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Off-Policy Learning

Q-learning update again:
Q(S’ A) A Q(Sv A) +oa R+ ’)/Hlai‘(Q(S/, CL/) - Q(Sv A) :
a'e

e Notice: this update doesn’t mention the policy anywhere. The
only thing the policy is used for is to determine which states are
visited.

@ This means we can follow whatever policy we want (e.g. e-greedy),
and it still coverges to the optimal Q-function. Algorithms like
this are known as off-policy algorithms, and this is an extremely
useful property.

e Policy gradient (another popular RL algorithm, not covered in this
course) is an on-policy algorithm. Encouraging exploration is
much harder in that case.
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Function Approximation
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Function Approximation

So far, we’ve been assuming a tabular representation of ): one
entry for every state/action pair.

o This is impractical to store for all but the simplest problems, and
doesn’t share structure between related states.
Solution: approximate () using a parameterized function, e.g.

o linear function approximation: Q(s,a) = w'(s,a)
e compute ) with a neural net

Update @) using backprop:

t < r(s,ae) + 7 max Q(sty1,a)

0 — 0+ a(t—Q(s,a)VeQ(st, ar).
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Function Approximation (optional)

o It’s tempting to think of Q-learning with function approximation
as minimizing the squared norm of the Bellman errors:

2
j(@) = E&A [(T(S, A) + VHLZ}XQQ(S/,G/) — Qg(S, A))

e Why isn’t this interpretation correct?
o The expectation depends on @, so the gradient V.7 (0) would need
to account for that.
o In addition to updating Qg(S, A) to better match
r(s,a) +vQe(S’,a’), gradient descent would update Qg(S’,a’) to
better match v~1(Qg(S, A) — r(S, A)). This makes no sense, since
r(S, A) + Qo (S’,a’) is a better estimate of the return.
o Q-learning with function approximation is chasing a “moving
target”, and one can show it isn’t gradient descent on any cost
function. The dynamics are hard to analyze.

e Still, we use it since we don’t have any good alternatives.
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Function Approximation

e Approximating () with a neural net is a decades-old idea, but
DeepMind got it to work really well on Atari games in 2013 (“deep
Q-learning”)

@ They used a very small network by today’s standards

1. take some action a; and observe (s;,a;,s},r;), add it to B
2. sample mini-batch {s;,a;,s’,r;} from B uniformly
3. compute y; =r; + Y maxy Qd)/(s’- a’-) using target network Qg
4 ¢ ¢—ay,; Plsia;)(Qulssia;) — v)
. update ¢': copy ¢ every N steps

t

@ Main technical innovation: store experience into a replay buffer,
and perform Q-learning using stored experience

o Gains sample efficiency by separating environment interaction from
optimization — don’t need new experience for every SGD update!
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Atari

o Mnih et al., Nature 2015. Human-level control through deep
reinforcement learning

o Network was given raw pixels as observations

e Same architecture shared between all games

e Assume fully observable environment, even though that’s not the
case

o After about a day of training on a particular game, often beat
“human-level” performance (number of points within 5 minutes of

play)
e Did very well on reactive games, poorly on ones that require
planning (e.g. Montezuma’s Revenge)

@ https://www.youtube.com/watch?v=V1eYniJORnk
@ https://www.youtube.com/watch?v=4M1Zncshy1Q
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https://www.youtube.com/watch?v=4MlZncshy1Q

Recap and Other Approaches

@ All discussed approaches estimate the value function first. They are
called value-based methods.

@ There are methods that directly optimize the policy, i.e., policy search
methods.

@ Model-based RL methods estimate the true, but unknown, model of
environment P by an estimate P, and use the estimate P in order to
plan.

@ There are hybrid methods.

Environment
(Real World)

Policy
Agent (Planner)

Model

Model
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Reinforcement Learning Resources

@ Books:

e Richard S. Sutton and Andrew G. Barto, Reinforcement Learning:
An Introduction, 2nd edition, 2018.

o Csaba Szepesvari, Algorithms for Reinforcement Learning, 2010.

e Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien
Ernst, Reinforcement Learning and Dynamic Programming Using
Function Approximators, 2010.

e Dimitri P. Bertsekas and John N. Tsitsiklis, Neuro-Dynamic
Programming, 1996.

@ Courses:

e Video lectures by David Silver

o CIFAR and Vector Institute’s Reinforcement Learning Summer
School, 2018.

e Deep Reinforcement Learning, CS 294-112 at UC Berkeley
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https://www.youtube.com/watch?v=2pWv7GOvuf0
https://dlrlsummerschool.ca/
https://dlrlsummerschool.ca/
http://rail.eecs.berkeley.edu/deeprlcourse/

