Linear Algebra Review
 (Adapted from Punit Shah's slides)

Introduction to Machine Learning (CSC 311) Spring 2020
University of Toronto

Basics

- A scalar is a number.

$$
x \in \mathbb{R} \quad 0, L
$$

- A vector is a 1-D array of numbers. The set of vectors of length n with real elements is denoted by \mathbb{R}^{n}.
- Vectos can be multiplied by a scalar.
- Vector can be added together if dimensions match.
- A matrix is a 2-D array of numbers. The set of $m \times n$ matrices with real elements is denoted by $\mathbb{R}^{m \times n}$.
- Matrices can be added together or multiplied by a scalar.
- We can multiply Matrices to a vector if dimensions match.
- In the rest we denote scalars with lowercase letters like@vectors with bold lowercase and matrices with bold uppercase \mathbf{A}.

Norms

- Norms measure how "large" a vector is. They can be defined for matrices too.
- The ℓ_{p}-norm for a vector \mathbf{x} :

$$
p \in[1, \infty)
$$

- The ℓ_{2}-norm is known as the Euclidean norm.
- The ℓ_{1}-norm is known as the Manhattan norm, i.e., $\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|$.
- The ℓ_{∞} is the max (or supremum) norm, ie., $\|\mathbf{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$.
lo- "form" is how many non-Eero elements Grot a real norm

Dot Product

- Dot product is defined as $\mathbf{v} \cdot \mathbf{u}=\mathbf{v}^{\top} \mathbf{u}=\sum_{i} u_{i} v_{i}$.
- The ℓ_{2} norm can be written in terms of dot product:
- Dot product of two vectors can be written in terms of their ℓ_{2} norms and the angle θ between them:

$$
\mathbf{a}^{\top} \mathbf{b}=\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{2} \cos (\theta)
$$

$$
\text { - Sind } 0^{\forall} \text { bun }
$$

$$
\cdot
$$

Cosine Similarity

- Cosine between two vectors is a measure of their similarity:

$$
\cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b} \in(-\infty, \infty)}{\|\mathbf{a}\|\|\mathbf{b}\|} .
$$

- Orthogonal Vectors: Two vectors \mathbf{a} and \mathbf{b} are orthogonal to each other if $\mathbf{a} \cdot \mathbf{b}=0$.

Vector Projection

- Given two vectors \mathbf{a} and \mathbf{b}, let $\hat{\mathbf{b}}=\frac{\mathbf{b}}{\|\mathbf{b}\|}$ be the unit vector in the direction of \mathbf{b}.
- Then $\mathbf{a}_{1}=a_{1} \cdot \hat{\mathbf{b}}$ is the orthogonal projection of \mathbf{a} onto a straight line parallel to \mathbf{b}, where

$$
a_{1}=\|\mathbf{a}\| \cos (\theta)=\mathbf{a} \cdot \hat{\mathbf{b}}=\mathbf{a} \cdot \frac{\mathbf{b}}{\|\mathbf{b}\|}
$$

$$
\operatorname{set}>
$$

Image taken from wikipedia.

Trace

- Trace is the sum of all the diagonal elements of a matrix, i.e.,

$$
\operatorname{Tr}(\mathbf{A})=\sum_{i} A_{i, i}
$$

- Cyclic property:

Multiplication

- Matrix-vector multiplication is a linear transformation. In other words,

$$
\left.\underset{r}{\mathbf{M}\left(v_{1}+a v_{2}\right)}\right)=\frac{\mathbf{M} v_{1}+a \mathbf{M} v_{2}}{} \Longrightarrow(\mathbf{M} v)_{i}=\sum_{j} M_{i, j} v_{j} .
$$

- Matrix-matrix multiplication is the composition of linear transformations, ie.,
$(\underline{\mathbf{A B}}) v=\mathbf{A (\overline { \mathbf { B } v })} \Longrightarrow(\mathbf{A B})_{i, j}=\sum_{k} A_{i, k} B_{k, j}$.
cost of computing $(A B) \cup$ can e
different then $A(B v)$

cost of $\left(M_{1} M_{2}\right)$ is $O(n \cdot m \cdot l e)$
if $\mu_{2} \in \mathbb{R}^{x \times m}$

Invertibality

- I denotes the identity matrix which is a square matrix of zeros with ones along the diagonal. It has the property $\mathbf{I A}=\mathbf{A}$ $(\mathbf{B I}=\mathbf{B})$ and $\mathbf{I v}=\mathbf{v}$

- A square matrix \mathbf{A} is invertible if \mathbf{A}^{-1} exists such that $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}$.
inverse very expensive! $O\left(n^{3}\right)$ in gencal
- Not all non-zero matrices are invertible, e.g., the following matrix is not invertible:

Transposition

- Transposition is an operation on matrices (and vectors) that interchange rows with columns. $\left(\mathbf{A}^{\top}\right)_{i, j}=\mathbf{A}_{j, i}$.
$(\mathbf{A B})^{\top}=\mathbf{B}^{\top} \mathbf{A}^{\top}$.
- \mathbf{A} is called symmetric when $\mathbf{A}=\mathbf{A}^{\top} .\left(\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right) \rightarrow\left(\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right)$
- \mathbf{A} is called orthogonal when $\mathbf{A} \mathbf{A}^{\top}=\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}$ or $\mathbf{A}^{-1}=\mathbf{A}^{\top}$.

AA T $7 A^{\top} A$ in general.

$$
\text { only or sym } A
$$

Diagonal Matrix

- A diagonal matrix has all entries equal to zero except the diagonal entries which might or might not be zero, e.g. identity matrix.
- A square diagonal matrix with diagonal enteries given by entries of vector \mathbf{v} is denoted by $\operatorname{diag}(\mathbf{v})$.
- Multiplying vector \mathbf{x} by a diagonal matrix is efficient:

$$
\operatorname{diag}(\mathbf{v}) \mathbf{x}=\mathbf{v} \odot \mathbf{x},
$$

where \odot is the entrywise product.

- Inverting a square diagonal matrix is efficient

$$
\operatorname{diag}(\mathbf{v})^{-1}=\operatorname{diag}\left(\left[\frac{1}{v_{1}}, \ldots, \frac{1}{v_{n}}\right]^{\top}\right)
$$

Determinant

- Determinant of a square matrix is a mapping to scalars.

$$
\operatorname{det}(\mathbf{A}) \text { or }|\mathbf{A}|
$$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
$$

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

List of Equivalencies

Assuming that \mathbf{A} is a square matrix, the following statements are equivalent

- $\mathbf{A x}=\mathbf{b}$ has a unique solution (for every b with correct dimension).
- $\mathbf{A x}=\mathbf{0}$ has a unique, trivial solution: $\mathbf{x}=\mathbf{0}$.
- Columns of \mathbf{A} are linearly independent.
- \mathbf{A} is invertible, i.e. \mathbf{A}^{-1} exists.
- $\operatorname{det}(\mathbf{A}) \neq 0$

Zero Determinant

If $\operatorname{det}(\mathbf{A})=0$, then:

- A is linearly dependent.
- $\mathbf{A x}=\mathbf{b}$ has infinitely many solutions or no solution. These cases correspond to when b is in the span of columns of \mathbf{A} or out of it.
- $\mathbf{A x}=\mathbf{0}$ has a non-zero solution. (since every scalar multiple of one solution is a solution and there is a non-zero solution we get infinitely many solutions.)

Matrix Decomposition

- We can decompose an integer into its prime factors, e.g., $12=2 \times 2 \times 3$.
- Similarly, matrices can be decomposed into product of other y matrices.

$$
\mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1} \quad A=B
$$

- Examples are Eigendecomposition, SVD, Schur decomposition, LU decomposition,

Eigenvectors

- An eigenvector of a square matrix \mathbf{A} is a nonzero vector \mathbf{v} such that multiplication by \mathbf{A} only changes the scale of $\mathbf{f} \mathbf{v}$.

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \quad \lambda=0,1
$$

- The scalar λ is known as the eigenvalue.

- If \mathbf{v} is an eigenvector of \mathbf{A}, so is any rescaled vector $s \mathbf{v}$. Moreover, $s v$ still has the same eigenvalue. Thus, we constrain the eigenvector to be of unit length:

$$
\|\mathbf{v}\|_{2}=1
$$

Characteristic Polynomial(1)

- Eigenvalue equation of matrix \mathbf{A}

$$
\begin{aligned}
\mathbf{A} \mathbf{v} & =\hat{\mathbf{v}} \\
\lambda \mathbf{v}-\mathbf{A} \mathbf{v} & =\mathbf{0} \\
(\lambda \mathbf{I}-\mathbf{A}) \mathbf{v} & =\mathbf{0}
\end{aligned}
$$

- If nonzero solution for \mathbf{v} exists, then it must be the case that:

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=0
$$

- Unpacking the determinant as a function of λ, we get:

$$
P_{A}(\lambda)=\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=1 \times \lambda^{n}+c_{n-1} \times \lambda^{n-1}+\ldots+c_{0}
$$

- This is called the characterisitc polynomial of A.

Characteristic Polynomial(2)

- If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are roots of the characteristic polynomial, they are eigenvalues of \mathbf{A} and we have $P_{A}(\lambda)=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right)$.
- $c_{n-1}=-\sum_{i=1}^{n} \lambda_{i}=-\operatorname{tr}(A)$. This means that the sum of eigenvalues equals to the trace of the matrix.
- $c_{0}=(-1)^{n} \prod_{i=1}^{n} \lambda_{i}=(-1)^{n} \operatorname{det}(\mathbf{A})$. The determinant is equal to the product of eigenvalues.
- Roots might be complex. If a root has multiplicity of $r_{j}>1$ (This is called the algebraic dimension of eigenvalue), then the geometric dimension of eigenspace for that eigenvalue might be less than r_{j} (or equal but never more). But for every eigenvalue, one eigenvector is guaranteed.

Example

- Consider the matrix:

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & -1 \\
1 & 2
\end{array}\right]
$$

- The characteristic polynomial is:

$$
\operatorname{det}(\lambda \mathbf{I}-\mathbf{A})=\operatorname{det}\left[\begin{array}{cc}
\lambda-2 & -1 \\
-1 & \lambda-2
\end{array}\right]=3-4 \lambda+\lambda^{2}=0
$$

- It has roots $\lambda=1$ and $\lambda=3$ which are the two eigenvalues of \mathbf{A}.
- We can then solve for eigenvectors using $\mathbf{A v}=\lambda \mathbf{v}$:

$$
\mathbf{v}_{\lambda=1}=[1,-1]^{\top} \quad \text { and } \quad \mathbf{v}_{\lambda=3}=[1,1]^{\top}
$$

Eigendecomposition

- Suppose that $n \times n$ matrix \mathbf{A} has n linearly independent eigenvectors $\left\{\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}\right\}$ with eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$.
- Concatenate eigenvectors (as columns) to form matrix V.
- Concatenate eigenvalues to form vector $\boldsymbol{\lambda}=\left[\lambda_{1}, \ldots, \lambda_{n}\right]^{\top}$.
- The eigendecomposition of \mathbf{A} is given by:

$$
\mathbf{A V}=\mathbf{V} \operatorname{diag}(\lambda) \Longrightarrow \mathbf{A}=\mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}
$$

Symmetric Matrices

- Every symmetric (hermitian) matrix of dimension n has a set of (not necessarily unique) n orthogonal eigenvectors. Furthermore, all eigenvalues are real.
- Every real symmetric matrix \mathbf{A} can be decomposed into real-valued eigenvectors and eigenvalues:

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}
$$

- \mathbf{Q} is an orthogonal matrix of the eigenvectors of \mathbf{A}, and $\boldsymbol{\Lambda}$ is a diagonal matrix of eigenvalues.
- We can think of \mathbf{A} as scaling space by λ_{i} in direction $\mathbf{v}^{(i)}$.

Eigendecomposition is not Unique

- Decomposition is not unique when two eigenvalues are the same.
- By convention, order entries of $\boldsymbol{\Lambda}$ in descending order. Then, eigendecomposition is unique if all eigenvalues have multiplicity equal to one. $\Delta \sum=\left(\begin{array}{cc}\lambda_{1} & 6 \\ \cdots & \lambda_{r}\end{array}\right) \quad \lambda_{q} \geqslant \lambda_{2}>\ldots \geq \lambda_{n}$
- If any eigenvalue is zero, then the matrix is singular. Because if \mathbf{v} is the corresponding eigenvector we have: $\mathbf{A v}=0 \mathbf{v}=0$.

Positive Definite Matrix

- If a symmetric matrix A has the property:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \geqslant 0 \text { for any nonzero vector } \mathbf{x}
$$

Then A is called positive definite.

- If the above inequality is not strict then A is called positive semidefinite.
- For positive (semi)definite matrices all eigenvalues are positive(non negative).

Singular Value Decomposition (SVD)

$$
A \in T^{n \times m}
$$

- If \mathbf{A} is not square, eigendecomposition is undefined.
- SVD is a decomposition of the form $\mathbf{A}=\mathbf{U D V}^{\top}$.
- SVD is more general than eigendecomposition. $u \in \mathbb{R}^{n \times n}$
- Every real matrix has a SVD.

$V \in \mathbb{R}^{n \times m}$

SVD Definition (1)

- Write \mathbf{A} as a product of three matrices: $\mathbf{A}=\mathbf{U D V}^{\top}$.
- If \mathbf{A} is $m \times n$, then \mathbf{U} is $m \times m, \mathbf{D}$ is $m \times n$, and \mathbf{V} is $n \times n$.
- \mathbf{U} and \mathbf{V} are orthogonal matrices, and \mathbf{D} is a diagonal matrix (not necessarily square).
- Diagonal entries of \mathbf{D} are called singular values of \mathbf{A}.
- Columns of \mathbf{U} are the left singular vectors, and columns of \mathbf{V} are the right singular vectors.

SVD Definition (2)

- SVD can be interpreted in terms of eigendecompostion.
- Left singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A A}^{\top}$
- Right singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$.
- Nonzero singular values of \mathbf{A} are square roots of eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\top}$.
- Numbers on the diagonal of D are sorted largest to smallest and are non-negative ($\mathbf{A}^{\top} \mathbf{A}$ and $\mathbf{A} \mathbf{A}^{\top}$ are semipositive definite.).

Matrix norms

- We may define norms for matrices too. We can either treat a matrix as a vector, and define a norm based on an entrywise norm (example: Frobenius norm). Or we may use a vector norm to "induce" a norm on matrices.
- Frobenius norm:

$$
\nrightarrow\|C\|_{F}\|A\|_{F}=\sqrt{\sum_{i, j} a_{i, j}^{2}}
$$

- Vector-induced (or operator, or spectral) norm:

$$
\|A\|_{2}=\sup _{\|x\|_{2}=1}\|A x\|_{2}
$$

SVD Optimality

- Given a matrix A, SVD allows us to find its "best" (to be defined) rank- r approximation \mathbf{A}_{r}.
- We can write $\mathbf{A}=\mathbf{U D} \mathbf{V}^{\top}$ as $\mathbf{A}=\sum_{i=1}^{n} d_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$.
- For $r \leq n$, construct $\mathbf{A}_{r}=\sum_{i=1}^{r} d_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{\top}$.
- The matrix \mathbf{A}_{r} is a rank- r approximation of A. Moreover, it is the best approximation of rank r by many norms:
- When considering the operator (or spectral) norm, it is optimal. This means that $\left\|A-A_{r}\right\|_{2} \leq\|A-B\|_{2}$ for any rank r matrix B.
- When considering Frobenius norm, it is optimal. This means that $\left\|A-A_{r}\right\|_{F} \leq\|A-B\|_{F}$ for any rank r matrix B. One way to interpret this inequality is that rows (or columns) of A_{r} are the projection of rows (or columns) of A on the bestr dimensional subspace, in the sense that this projection minimizes the sum of squared distances.

