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Basics

@ A scalar is a number. Xéﬂ’ 0. L

@ A vector is a 1-D array of numbers. The set of vectors of length n
with real elements is denoted by R™.

e Vectos can be multiplied by a scalar.
e Vector can be added together if dimensions match.

e A matrix is a 2-D array of numbers. The set of m x n matrices
with real elements is denoted by R"*™,

e Matrices can be added together or multiplied by a scalar.
e We can multiply Matrices to a vector if dimensions match.

o In the rest we denote scalars with lowercase letters like(ay)vectors
with bold lowercas@and matrices with bold upperca
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Norms

e Norms measure how “large” a vector is. They can be defined for

madtrices too. Q;\) —{\L
. w

e The /,-norm for a vector x:

el ©
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e The ¢5-norm is known as the Euclidean norm.
o The /;-norm is known as the Manhattan norm, i.e., ||x||1 = ), |z;|.
b g © The / is the max (or supremum) norm, i.e., ||x||oc = max; |z;|.
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Dot Product

e Dot product is defined as v-u=v'u= > i Wi

@ The /5 norm can be written in terms of dot product: |} V/

@ Dot product of two vectors can be written in terms of their /o
norms and the angle 6 between them:

a'b = |lall; [|bll; cos(6)
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Cosine Similarity

e Cosine between two vectors is a measure of their similarity:

a(\b%(’oo,@

X
—r
@ Orthogonal Vectors: Two vectors a and b are orthogonal to

each other if a-b = 0.

cos(6)
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Vector Projection

e Given two vectors a and b, let b= b be the unit vector in the
direction of b.

o Then a; = ay - b is the orthogonal projection of a onto a straight
line parallel to b, where

W« Q i
R\@ \\ a1 = ||a|| cos(0) :a-b:a-L
- -

\” 'S

gt

Image taken from wikipedia.
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Trace

@ Trace is the sum of all the diagonal elements of a matrix, i.e.,

=) A

e Cyclic property:

Tr(ABC) = Tr(CAB) = Tr(BCA).

FCGR do(l By ~syen
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Multiplication

e Matrix-vector multiplication is a linear transformation. In other
WOI'dS’ K_Z,///_>>
)

M(vy + ave) = Muy + aMuve = (Muv); = Z M; jv;.
- == g ———

J
e Matrix-matrix multiplication is the composition of linear
transformations, i.e.,
(AB?}— P)j :> AB) Zk ZkBkj//_\
@@&% &Q* (oM UlW\ﬁ TR O e @
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Invertibality

@ I denotes the identity matrix which is a square matrix of zeros
with ones along the diagonal. It has the property IA = A

(BI=B)and Iv=v - [1\\ O
ﬂ [(9«"\&

e A square matrix A is invertible if A~! exists such That
A TA=AA"1-=1

= T ®) i
RN osie O st
@ Not all non-zero matrices are invertible, e.g., the following matrix
is not invertible:
1 1
[1 1
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Transposition

e Transposition is an operation on matrices (and vectors) that
interchange rows with columns. (A');; = A;;.

{ 2
o A is called symmetric when A = A", Ugi} 7/ Cj, c/(>

e A is called orthogonal when AAT = ATA=Tor A-l=AT.
C 1
AT FHA caa\wl%
9(\% @f E%n’\ A
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Diagonal Matrix

e A diagonal matrix has all entries equal to zero except the diagonal
entries which might or might not be zero, e.g. identity matrix.

@ A square diagonal matrix with diagonal enteries given by entries of
vector v is denoted by diag(v).
—

e Multiplying vector x by a diagonal matrix is efficient:

diag(v)x = v @X (
where ® is the entrywise product. }ﬁ

e Inverting a square diagonal matrix is efficient

o

: _ . 1 1

diag(v)™! = dlag([v—l,...,v—]T).
P&
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Determinant

@ Determinant of a square matrix is a mapping to scalars.
det(A) or |A]

@ Measures how much multiplication by the matrix expands or
contracts the space.

@ Determinant of product is the product of determinants:

det(AB) = det(A)det(B)

a b
c d

' = ad — bc
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List of Equivalencies

Assuming that A is a square matrix, the following statements are
equivalent

e Ax = b has a unique solution (for every b with correct
dimension).

@ Ax = 0 has a unique, trivial solution: x = 0.

@ Columns of A are linearly independent.
/@
@ A is invertible, i.e. A@t&

+ SeiC) # 075
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Zero Determinant

If det(A) = 0, then:

@ A is linearly dependent.

e Ax = b has infinitely many solutions or no solution. These cases
correspond to when b is in the span of columns of A or out of it.

@ Ax = 0 has a non-zero solution. (since every scalar multiple of
one solution is a solution and there is a non-zero solution we get
infinitely many solutions.)
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Matrix Decomposition

@ We can decompose an integer into its prime factors, e.g.,
12=2x2 x 3.

\bml\&@bggmy

e Similarly, matrices can be decomposed into product of other [

¢
atrices A = VdiagA)V~! ﬁ@ C/

e Examples are Eigendecomposition, SVD, Schur j\ composmon LU

decomposition, .... R T
A=Q AL
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Figenvectors

@ An eigenvector of a square matrix A is a nonzero vector v such

that multiplication by A only changes the scale of, v. [
_ Ve [;L
Av = \v />‘~/DDL
a4

@ The scalar X is known as the eigenvalue. /@'k//\/

e If v is an eigenvector of A, so is any rescaled vector sv. Moreover,
sv still has the same eigenvalue. Thus, we constrain the
eigenvector to be of unit length:

vl =1
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Characteristic Polynomial(1)

e Eigenvalue equation of matrix

A2v —Av = 0
M-—A)v =0

e If nonzero solution for v exists, then it must be the case that:
det(A\I—A) = 0
e Unpacking the determinant as a function of A\, we get:

PiA) =detQAI —A)=1x A"+ ¢y X A" 1+ ...+ ¢
k

@ This is called the characterisitc polynomial of A.
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Characteristic Polynomial(2)

If A1, Aa, ..., \, are roots of the characteristic polynomial, they are
eigenvalues of A and we have P4(\) = [[;_; (A — \).

Cn—1 = — w1 Ai = —tr(A). This means that the sum of
eigenvalues equals to the trace of the matrix.

co = (—1)"[Ii=; Ai = (—1)"det(A). The determinant is equal to
product of eigenvalues.

e Roots might be complex. If a root has multiplicity of r; > 1 (This
is called the algebraic dimension of eigenvalue), then the geometric
dimension of eigenspace for that eigenvalue might be less than r;
(or equal but never more). But for every eigenvalue, one
eigenvector is guaranteed.
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Example

@ Consider the matrix:

@ The characteristic polynomial is:

o~

=3 —4A+ A =0

A—2 -1
det()TI—A) —det[ 1 )\_2]

@ It has roots A =1 and A = 3 which are the two eigenvalues of A.

@ We can then solve for eigenvectors using Av = \v:

vier =[1,-1]" and wvy_3=[1,1]"
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Figendecomposition

@ Suppose that n X n matrix A has n linearly independent
eigenvectors {v\1), ... v("} with eigenvalues {\1, ...

e Concatenate eigenvectors (as columns) to form matrlx V. @/Ur ‘ 1

o Concatenate eigenvalues to form vector A = [Ar,..., \,] .

@ The eigendecomposition of A is given by:

AV = Vdiag(\) = A = Vdiag\)V !
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Symmetric Matrices
o

o Every symmetric (hermitian) matrix of dimension n has a set of
(not necessarily unique) n orthogonal eigenvectors. Furthermore,
all eigenvalues are real.

AN
@ Every real symmetric matrix A can be decomposed into
real-valued eigenvectors and eigenvalues:
A = QAQ'
e () is an orthogonal matrix of the eigenvectors of A, and A is a
diagonal matrix of eigenvalues. y
L

e We can think of A as scaling space by )\; in direction v(®.
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Eigendecomposition is not Unique

@ Decomposition is not unique when two eigenvalues™are/the same.

e By convention, order entries of A in descending order. Then,
eigendecomposition is unique if all eigenvalues have multiplicity

equal to one. At (//\éa > /><1L>/ %Z > . Z %

e If any eigenvalue is zero, then the matrix is singular. Because if v
is the corresponding eigenvector we have: Av = 0v = 0.
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Positive Definite Matrix

e If a symmetric matrix A has the property: %M’/A

x' Ax >0 for any nonzero vector x
P <

Then A is called positive definite.

e If the above inequality is not strict then A is called positive
semidefinite.

e For positive (semi)definite matrices all eigenvalues are positive(non
negative). ~— |
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Singular Value Decomposition (SVD)
/\KI/V\

el

e If A is not square, eigendecomposition is undefined.

/\‘>
e SVD is a decomposition of the form A = UDV .

/Z/f\2</\
@ SVD is more general than eigendecomposition%é U

M
e Every real matrix has a SVD. \/ 6(/2
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SVD Definition (1)

o Write A as a product of three matrices: A = UDV .
@ I[f Aism xn,then Uism xm, Dism xn, and V is n X n.

e U and V are orthogonal matrices, and D is a diagonal matrix (not
necessarily square).  ~

e Diagonal entries of D are called singular values of A.

@ Columns of U are the left singular vectors, and columns of V
are the right singular vectors.
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SVD Definition (2)

2\
1 Ai“\
pet M”’ pr
@ SVD can be interpreted in terms of eigendecompostion.
e Left singular vectors of A are the eigenvectors of .

<N\
e Right singular vectors of A are the eigenvectors of N
pr

@ Nonzero singular values of A are square roots of eigenvalues of
ATA and AAT.

e Numbers on the diagonal of D are sorted largest to smallest and
are non-negative (A" A and AA" are semipositive definite.).
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Matrix norms

@ We may define norms for matrices too. We can either treat a
matrix as a vector, and define a norm based on an entrywise norm
(example: Frobenius norm). Or we may use a vector norm to
“induce” a norm on matrices.

@ Frobenius norm:

& N Ol -

AN

e Vector-induced (or operator, or spectral) norm:

IAll; = sup [|Az],.

]l =1
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SVD Optimality

e Given a matrix A, SVD allows us to find its “best” (to be defined)
rank-r approximation A,.

o We can write A =UDV' as A ="  diuv,

Z' .
o For r < n, construct A, =>7_, diuiviT.

@ The matrix A, is a rank-r approximation of A. Moreover, it is the
best approximation of rank r by many norms:

o When considering the operator (or spectral) norm, it is optimal,
This means that |A — A, || < ||A — B||2 for any rank r matrix B.

e When considering Frobenius norm, it is optimal. This means that
|A — A, ||F < ||A — Bl|r for any rank r matrix B. One way to
interpret this inequality is that rows mns) of A, are the
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