Linear Algebra Review (Adapted from Punit Shah's slides)

Introduction to Machine Learning (CSC 311) Spring 2020

University of Toronto

Basics

- A vector is a 1-D array of numbers. The set of vectors of length n with real elements is denoted by \mathbb{R}^n .
 - Vectos can be multiplied by a scalar.
 - Vector can be added together if dimensions match.
- A matrix is a 2-D array of numbers. The set of $m \times n$ matrices with real elements is denoted by $\mathbb{R}^{m \times n}$.
 - Matrices can be added together or multiplied by a scalar.
 - We can multiply Matrices to a vector if dimensions match.
- In the rest we denote scalars with lowercase letters like *a*, vectors with bold lowercase **v**, and matrices with bold uppercase **A**.

- Norms measure how "large" a vector is. They can be defined for matrices too.
- $\int_{2-\text{norm is known as the E}} \int_{1}^{1} |x||_{p} = \sum_{i=1}^{n} |x_{i}|^{p} \int_{1}^{1} \int_{1}^{$ • The ℓ_p -norm for a vector **x**: • The ℓ_2 -norm is known as the Euclidean norm. • The ℓ_1 -norm is known as the Manhattan norm, i.e., $\|\mathbf{x}\|_1 = \sum_i |x_i|$. • The ℓ_{∞} is the max (or supremum) norm, i.e., $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$. to - "norm" is how many non-zero elements La rot a real norm CL2000.0

Dot Product

- Dot product is defined as $\mathbf{v} \cdot \mathbf{u} = \mathbf{v}^\top \mathbf{u} = \sum_i u_i v_i$.
- The ℓ_2 norm can be written in terms of dot product: $\|\mathbf{u}\|_2 = \sqrt{1-2}$
- Dot product of two vectors can be written in terms of their ℓ_2 norms and the angle θ between them:

'<mark>u.u</mark>.

• Cosine between two vectors is a measure of their similarity:

$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}.$$

• Orthogonal Vectors: Two vectors \mathbf{a} and \mathbf{b} are orthogonal to each other if $\mathbf{a} \cdot \mathbf{b} = 0$.

Vector Projection

- Given two vectors **a** and **b**, let $\hat{\mathbf{b}} = \frac{\mathbf{b}}{\|\mathbf{b}\|}$ be the unit vector in the direction of **b**.
- Then $\mathbf{a}_1 = a_1 \cdot \hat{\mathbf{b}}$ is the orthogonal projection of **a** onto a straight line parallel to **b**, where

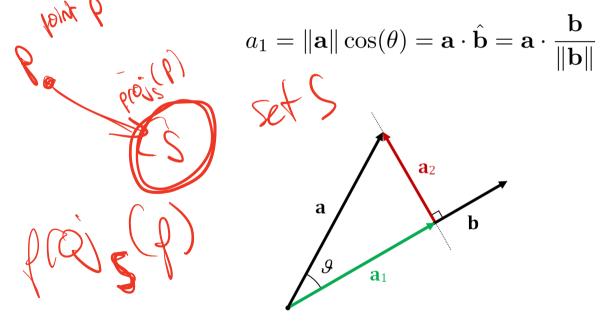


Image taken from wikipedia.

• Trace is the sum of all the diagonal elements of a matrix, i.e.,

$$\operatorname{Tr}(\mathbf{A}) = \sum_{i} A_{i,i}.$$

• Cyclic property:

$$Tr(ABC) = Tr(CAB) = Tr(BCA).$$

Multiplication

• Matrix-vector multiplication is a linear transformation. In other words,

$$\mathbf{M}(v_1 + av_2) \stackrel{\checkmark}{=} \mathbf{M}v_1 + a\mathbf{M}v_2 \Longrightarrow (\mathbf{M}v)_i = \sum_j M_{i,j}v_j.$$

• Matrix-matrix multiplication is the composition of linear transformations, i.e., $(\mathbf{AB})v = \mathbf{A}(\mathbf{B}v) \implies (\mathbf{AB})_{i,j} = \sum_k A_{i,k}B_{k,j}.$ R lost of computing b_{1,2} b_{2,2} (AB) v can be a_{1,1} a_{1,2} different than 4 (BV) a_{2.1} Α a_{3,1} a_{3,2}

• I denotes the identity matrix which is a square matrix of zeros with ones along the diagonal. It has the property IA = A(BI = B) and Iv = v

• A square matrix **A** is invertible if \mathbf{A}^{-1} exists such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}.$

• Not all non-zero matrices are invertible, e.g., the following matrix is not invertible:

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

• Transposition is an operation on matrices (and vectors) that interchange rows with columns. $(\mathbf{A}^{\top})_{i,j} = \mathbf{A}_{j,i}$.

$$\mathbf{(AB)}^{\top} = \mathbf{B}^{\top} \mathbf{A}^{\top}.$$

• A is called symmetric when $\mathbf{A} = \mathbf{A}^{\top}$.

• A is called orthogonal when $\mathbf{A}\mathbf{A}^{\top} = \mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$ or $\mathbf{A}^{-1} = \mathbf{A}^{\top}$. $A\mathbf{A}^{\top} \neq \mathbf{A}^{\top}\mathbf{A}$ in general. only be sym A

Diagonal Matrix

- A diagonal matrix has all entries equal to zero except the diagonal entries which might or might not be zero, e.g. identity matrix.
- A square diagonal matrix with diagonal enteries given by entries of vector **v** is denoted by diag(**v**).
- Multiplying vector \mathbf{x} by a diagonal matrix is efficient:

$$\operatorname{diag}(\mathbf{v})\mathbf{x} = \mathbf{v} \odot \mathbf{x},$$

where \odot is the entrywise product.

• Inverting a square diagonal matrix is efficient

diag
$$(\mathbf{v})^{-1} = \operatorname{diag}\left(\left[\frac{1}{v_1}, \dots, \frac{1}{v_n}\right]^{\top}\right).$$

• Determinant of a square matrix is a mapping to scalars.

$$\det(\mathbf{A})$$
 or $|\mathbf{A}|$

- Measures how much multiplication by the matrix expands or contracts the space.
- Determinant of product is the product of determinants:

 $\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Assuming that \mathbf{A} is a square matrix, the following statements are equivalent

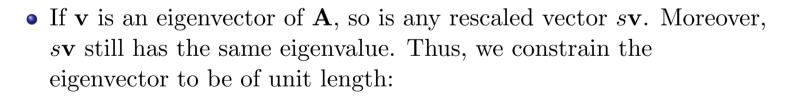
- Ax = b has a **unique** solution (for every *b* with correct dimension).
- Ax = 0 has a unique, trivial solution: x = 0.
- Columns of **A** are linearly independent.
- A is invertible, i.e. A^{-1} exists.

• det(A) $\neq 0$

If $det(\mathbf{A}) = 0$, then:

- A is linearly dependent.
- Ax = b has infinitely many solutions or no solution. These cases correspond to when b is in the span of columns of A or out of it.
- Ax = 0 has a non-zero solution. (since every scalar multiple of one solution is a solution and there is a non-zero solution we get infinitely many solutions.)

- We can decompose an integer into its prime factors, e.g., $12 = 2 \times 2 \times 3.$
- Similarly, matrices can be decomposed into product of other matrices. A = B O $A^{L} = B^{-L} O$


$$\mathbf{A} = \mathbf{V} \operatorname{diag}(\boldsymbol{\lambda}) \mathbf{V}^{-1}$$

• Examples are Eigendecomposition, SVD, Schur decomposition, LU decomposition, A=Q_

• An eigenvector of a square matrix **A** is a nonzero vector **v** such that multiplication by **A** only changes the scale of **v**. $\lambda = 0.1$ $\sqrt{-1}$

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$

• The scalar λ is known as the **eigenvalue**.

$$||\mathbf{v}||_2 = 1$$

Characteristic Polynomial(1)

• Eigenvalue equation of matrix **A**

$$\mathbf{A}\mathbf{v} = \mathbf{A}\mathbf{v}$$
$$\lambda \mathbf{v} - \mathbf{A}\mathbf{v} = \mathbf{0}$$
$$(\lambda \mathbf{I} - \mathbf{A})\mathbf{v} = \mathbf{0}$$

 $\bullet\,$ If nonzero solution for ${\bf v}$ exists, then it must be the case that:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = 0$$

• Unpacking the determinant as a function of λ , we get:

$$P_A(\lambda) = \det(\lambda \mathbf{I} - \mathbf{A}) = \underbrace{1}_{\frown} \times \lambda^n + c_{\underline{n-1}} \times \lambda^{n-1} + \ldots + c_0$$

• This is called the characterisite polynomial of A.

Characteristic Polynomial(2)

• If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are roots of the characteristic polynomial, they are eigenvalues of **A** and we have $P_A(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i)$.

• $c_{n-1} = -\sum_{i=1}^{n} \lambda_i = -tr(A)$. This means that the sum of eigenvalues equals to the trace of the matrix.

• $c_0 = (-1)^n \prod_{i=1}^n \lambda_i = (-1)^n det(\mathbf{A})$. The determinant is equal to the product of eigenvalues.

• Roots might be complex. If a root has multiplicity of $r_j > 1$ (This is called the algebraic dimension of eigenvalue), then the geometric dimension of eigenspace for that eigenvalue might be less than r_j (or equal but never more). But for every eigenvalue, one eigenvector is guaranteed.

• Consider the matrix:

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

• The characteristic polynomial is:

$$\det(\lambda \mathbf{I} - \mathbf{A}) = \det \begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} = 3 - 4\lambda + \lambda^2 = 0$$

• It has roots $\lambda = 1$ and $\lambda = 3$ which are the two eigenvalues of **A**.

• We can then solve for eigenvectors using $\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$:

$$\mathbf{v}_{\lambda=1} = \begin{bmatrix} 1, -1 \end{bmatrix}^{\top} \text{ and } \mathbf{v}_{\lambda=3} = \begin{bmatrix} 1, 1 \end{bmatrix}^{\top}$$

- Suppose that $n \times n$ matrix **A** has *n* linearly independent eigenvectors $\{\mathbf{v}^{(1)}, \ldots, \mathbf{v}^{(n)}\}$ with eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$.
- Concatenate eigenvectors (as columns) to form matrix V.
- Concatenate eigenvalues to form vector $\boldsymbol{\lambda} = [\lambda_1, \dots, \lambda_n]^\top$.
- The **eigendecomposition** of **A** is given by:

$$\mathbf{AV} = \mathbf{V}diag(\lambda) \implies \mathbf{A} = \mathbf{V}diag(\boldsymbol{\lambda})\mathbf{V}^{-1}$$

Symmetric Matrices

- Every symmetric (hermitian) matrix of dimension n has a set of (not necessarily unique) n orthogonal eigenvectors. Furthermore, all eigenvalues are real.
- Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues:

 $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$

Plot of vectors Au

(ellipse)

- Q is an orthogonal matrix of the eigenvectors of A, and Λ is a diagonal matrix of eigenvalues.
- We can think of **A** as scaling space by λ_i in direction $\mathbf{v}^{(i)}$ = XTAX Kell

Plot of unit vectors $u \in \mathbb{R}^2$ (circle) Before multiplication with two variables x_1 and x_2

Intro ML (UofT)

Eigendecomposition is not Unique

- Decomposition is not unique when two eigenvalues are the same.
- By convention, order entries of Λ in descending order. Then, eigendecomposition is unique if all eigenvalues have multiplicity equal to one. $\sum_{i=1}^{n} \begin{pmatrix} \lambda_{i} & 0 \\ G & \lambda_{i} \end{pmatrix} \qquad \lambda_{1} \neq \lambda_{2} \neq \dots \neq \lambda_{n}$
- If any eigenvalue is zero, then the matrix is **singular**. Because if **v** is the corresponding eigenvector we have: $\mathbf{A}\mathbf{v} = 0\mathbf{v} = 0$.

• If a symmetric matrix A has the property:

 $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \ge 0$ for any nonzero vector \mathbf{x}

NXN MA

Then A is called **positive definite**.

- If the above inequality is not strict then A is called **positive** semidefinite.
- For positive (semi)definite matrices all eigenvalues are positive(non negative).

Singular Value Decomposition (SVD)

Aemar

- If A is not square, eigendecomposition is undefined.
- SVD is a decomposition of the form $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- SVD is more general than eigendecomposition. \mathcal{C}
- Every real matrix has a SVD.

JERMAN

- Write **A** as a product of three matrices: $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$.
- If A is $m \times n$, then U is $m \times m$, D is $m \times n$, and V is $n \times n$.
- U and V are orthogonal matrices, and D is a diagonal matrix (not necessarily square).
- Diagonal entries of **D** are called **singular values** of **A**.
- Columns of **U** are the **left singular vectors**, and columns of **V** are the **right singular vectors**.

SVD Definition (2)

• SVD can be interpreted in terms of eigendecomposition.

- Left singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}\mathbf{A}^{\top}$
- Right singular vectors of \mathbf{A} are the eigenvectors of $\mathbf{A}^{\dagger}\mathbf{A}$.
- Nonzero singular values of A are square roots of eigenvalues of A[⊤]A and AA[⊤].
- Numbers on the diagonal of D are sorted largest to smallest and are non-negative ($\mathbf{A}^{\top}\mathbf{A}$ and $\mathbf{A}\mathbf{A}^{\top}$ are semipositive definite.).

U.KV

TATN AZ

- We may define norms for matrices too. We can either treat a matrix as a vector, and define a norm based on an entrywise norm (example: Frobenius norm). Or we may use a vector norm to "induce" a norm on matrices.
- Frobenius norm: **R** $\|A\|_F = \sqrt{\sum_{i,j} a_{i,j}^2}$.
- Vector-induced (or operator, or spectral) norm:

$$||A||_2 = \sup_{||x||_2=1} ||Ax||_2.$$

SVD Optimality

- Given a matrix \mathbf{A} , SVD allows us to find its "best" (to be defined) rank-r approximation \mathbf{A}_r .
- We can write $\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top}$ as $\mathbf{A} = \sum_{i=1}^{n} d_i \mathbf{u}_i \mathbf{v}_i^{\top}$.
- For $r \leq n$, construct $\mathbf{A}_r = \sum_{i=1}^r d_i \mathbf{u}_i \mathbf{v}_i^{\top}$.
- The matrix \mathbf{A}_r is a rank-*r* approximation of *A*. Moreover, it is the best approximation of rank *r* by many norms:
 - When considering the operator (or spectral) norm, it is optimal. This means that $||A - A_r||_2 \le ||A - B||_2$ for any rank r matrix B.
 - When considering Frobenius norm, it is optimal. This means that $||A A_r||_F \leq ||A B||_F$ for any rank r matrix B. One way to interpret this inequality is that rows (or columns) of A_r are the projection of rows (or columns) of A on the best r dimensional subspace, in the sense that this projection minimizes the sum of squared distances.

Intro ML (UofT)

CSC311 - Tut 2 - Linear Algebra

rank r