
Recurrent�Neural�Networks�(RNNs)�BOE�5SBOTGPSNFST
CSC413H1S�2021�Tutorial�7

)BPUJBO�$VJ

#BTFE�PO�UIF�UVUPSJBMT�PG�4����GBMM�����

Recurrent Neural Networks (RNNs) 1 / 27

The Big Picture

Many domains feature sequences of data with temporal dependencies:

Natural Language Processing (NLP)

Time series forecasting (Healthcare, Finance, etc.)

Common tasks:

Predict the next value in a sequence

Convert data sequence to equivalent sequence in another space
(translation)

Classify the entire sequence into specific class.

Recurrent Neural Networks (RNNs) 2 / 27

Related Methods

How do we model data which contains time dependency?

Autoregressive methods: Predict next data observation as a linear
equation of previously observed data points.

Ex: xt = w1 ⇤ xt�1 + w2 ⇤ xt�2 + ...+ wK ⇤ xt�K

Representational ability is limited. Only looks K steps back in time!

Recurrent Neural Networks (RNNs) 3 / 27

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) o↵er several advantages:

Non-linear hidden state updates allows high representational power.

Can represent long term dependencies in hidden state (theoretically).

Shared weights, can be used on sequences of arbitrary length.

Recurrent Neural Networks (RNNs) 5 / 27

Recurrent Neural Networks

ht = Wih xt +Whh ht�1 + bih + bhh (1)

at = tanh(ht) (2)

ot = softmax(Who at + bho) (3)

Weight matrices are shared, meaning sequence can be arbitrary length.

Recurrent Neural Networks (RNNs) 6 / 27

Applications of RNN

Recurrent Neural Networks (RNNs) 7 / 27

RNN Modifications: Bidirectional RNNs

Bidirectional RNNs (Schuster and Paliwal 1997)

Source: http://colah.github.io/posts/2015-09-NN-Types-FP/

Runs two separate RNN in opposite directions, and concatenate output.

Access to the future values can improve RNN representations.

Example: The is a flightless bird that lives in Antarctica.

Recurrent Neural Networks (RNNs) 10 / 27

http://colah.github.io/posts/2015-09-NN-Types-FP/

RNN Modifications: Stacked RNNs

Stacked RNNs

Recurrent Neural Networks (RNNs) 11 / 27

PyTorch Implementation

Recurrent Neural Networks (RNNs) 12 / 27

Long Term Dependencies

Prediction tasks in time series often requires long term information from
observations ago.

Example: “The flamingo is a pink bird which lives in warmer regions of the
world, and they like to speak in run-on sentences for the sake of this
example. Surprisingly, are not naturally pink, but rather appear
pink because they are always embarrassed.”

Task: Fill in the blank. The RNN needs to store information about the
subject for an arbitrarily long length. Experiments show RNNs have a hard
time remembering.

Recurrent Neural Networks (RNNs) 14 / 27

Gradient Issues

Consider: Deepest feed forward models contain up to ⇠ 150 layers, but
the type of sequential data used in RNNs can easily exceed this in length.
What happens to the gradient?

Some intuition:

Backprop is chain rule, i.e., recursive multiplication of many VJPs.

The derivative of the Tanh / Sigmoid activation is always less than 1.

Multiplying gradient with enough activation Jacobians will cause the
gradient will go to 0.

Gradients can explode with ReLU activations (since its unbounded).

Hacky fixes: Gradient clipping to prevent explosion.

Recurrent Neural Networks (RNNs) 15 / 27

LSTMs

Long Short-Term Memory (LSTM) units introduce long term cell state,
allowing gradients to flow without being forced to change.

Well, that description was unclear. Lets break it down!

The following figures are directly taken from Chris Olah’s blog:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Avoiding citing each image to save space, but I claim no credit!

Side note: his blog contains many top tier tutorials, and is worth
checking out.

Recurrent Neural Networks (RNNs) 16 / 27

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

RNN Diagram

Recurrent Neural Networks (RNNs) 17 / 27

LSTMs

LSTM Diagram

Recurrent Neural Networks (RNNs) 18 / 27

LSTMs

Personally, I think of cell state as long-term memory. Protected by gates
(next slides) from unwanted gradient updates.

Recurrent Neural Networks (RNNs) 19 / 27

LSTMs

Forget Gate: Deletes information from cell state.

Takes linear combination of xt and ht=1.

Sigmoid activation squashes to range 0 (forget) to 1 (remember).

Output multiplied element-wise with cell state to forget certain pieces
of long term information (e.g., if the subject switches).

Recurrent Neural Networks (RNNs) 20 / 27

LSTMs

Input Gate: Adds information to cell state.

First function determines which cell dimensions to update.

Second function determines what values to update cell state with.

Output of input gate is added to cell state.

Recurrent Neural Networks (RNNs) 21 / 27

LSTMs

Output Gate: Decides what information to output from cell state.

Afterwards, hidden and cell states passed to next cell.

Recurrent Neural Networks (RNNs) 22 / 27

GRU

LSTMs are pretty complex, and require many weights.

Gated Recurrent Units (GRUs) (Cho et al. 2014) simplify LSTMs, and
should perform roughly as well.

Merge cell and hidden states, but keep the concept of gating updates to
hidden state.

Recurrent Neural Networks (RNNs) 24 / 27

Conclusions

So do LSTMs actually solve the vanishing gradient problem? Kinda!

Many deployed real-world applications.
Powered Google Translate for many years.

Long term dependencies still challenging in reality.

Figure: Heatmap of gradient flow mapped out by depth.
Source: https://github.com/OverLordGoldDragon/see-rnn

Recurrent Neural Networks (RNNs) 25 / 27

https://github.com/OverLordGoldDragon/see-rnn

References

Zhengping Che et al. “Recurrent neural networks for multivariate time series
with missing values”. In: Scientific reports 8.1 (2018), pp. 1–12.

Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural
networks”. In: IEEE transactions on Signal Processing 45.11 (1997),
pp. 2673–2681.

Recurrent Neural Networks (RNNs) 27 / 27

İƨऒƕ țǶȕƨ ŗȳ ŗɼƉǫǶʚƨƉʚʯɼŗț ɱɼǶȭǶʚǶ˙ƨ ʚǫŗʚ Ƕʌࣘ

࣢ yƕƨŗțț˦ ǑƨƨƕࣽǑɄɼ˝ŗɼƕ
࣢ ,ŗȳ ǑŗƉǶțǶʚŗʚƨ ſƨʚ˝ƨƨȳࣽʚɄȕƨȳ ǶȳʚƨɼŗƉʚǶɄȳʌ
࣢ ,ŗȳ ȭɄƕƨț țɄȳǖ ƕƨɱƨȳƕƨȳƉƨʌ ƨŗʌǶț ࣖ˦

�ʚʚƨȳʚǶɄȳ ʚɄ ʚǫƨ ɼƨʌƉʯƨࣛ

࣢ ÿǫƨɼƨ ŗɼƨ ȭŗȳ˦ ǑɄɼȭʌ ɄǑ ŗʚʚƨȳʚǶɄȳࣖ ÿɄƕŗ˦ ˝ƨऒțț ǑɄƉʯʌ Ʉȳ
ʌƉŗțƨƕ ƕɄʚ ɱɼɄƕʯƉʚ ŗʚʚƨȳʚǶɄȳࣖ

࢑

�ʚʚƨȳʚǶɄȳ

࣢ óǶȭǶțŗɼǶʚ˦ࣘ 6Ʉʚ ɱɼɄƕʯƉʚ ſƨʚ˝ƨƨȳ ȕƨ˦ʌ ŗȳƕ ɸʯƨɼǶƨʌࣖ
࣢ yȳʚƨɼƨʌʚǶȳǖ ʚǫƨɄɼƨȭࣘ yȳ ǫǶǖǫ ƕǶȭƨȳʌǶɄȳʌࣗ ʚ˝Ʉ ɼŗȳƕɄȭț˦ ʌŗȭɱțƨƕ ࡹ ˙ƨƉʚɄɼʌ
ŗɼƨ ŗțȭɄʌʚ ŗț˝ŗ˦ʌ ŗɱɱɼɄ˥Ƕȭŗʚƨț˦ ɱƨɼɱƨȳƕǶƉʯțŗɼ ʚɄ ƨŗƉǫ Ʉʚǫƨɼࣖ

࣢ ¥ɄɼȭŗțǶ˲ŗʚǶɄȳࣘ óɄǒʚȭŗ˥ ŗțɄȳǖ ʚǫƨ ȕƨ˦ʌࣩ˙ŗțʯƨʌࣛ
࣢ éƨʌʯțʚࣘ óƉŗțƨƕ ƕɄʚ ɱɼɄƕʯƉʚ ŗʚʚƨȳʚǶɄȳࣖ
࣢ İƨ ǖƨʚ ʚǫƨ ǑɄțțɄ˝Ƕȳǖ ŗʚʚƨȳʚǶɄȳ ȭƨƉǫŗȳǶʌȭࣘ

A(Ü, �, Ğ) = Ğ(ɾȹǋʋȣŗ˕(�
òÜ
Ɛȋɪ

)) ࣱࡽ࣯

bɼɄȭࣗࡹ țƨʚʌ ʌŗ ࣗ˦ ŗ ǶʌɄʚɼɄɱǶƉ ȭʯțʚǶ˙ŗɼǶŗʚƨ eŗʯʌʌǶŗȳ ƕǶʌʚɼǶſʯʚǶɄȳࣖ

ࡹࡹ

�ʚʚƨȳʚǶɄȳ

ࡽࡹ

óƨțǑࣽ�ʚʚƨȳʚǶɄȳ

࣢ İǫŗʚ Ƕʌ ʌƨțǑࣽŗʚʚƨȳʚǶɄȳࣞ
࣢ Ďʌƨ ʚǫƨ ʌŗȭƨ ʚƨȳʌɄɼ ǑɄɼ ȕƨ˦ʌࣗ ˙ŗțʯƨʌ ŗȳƕ ɸʯƨɼǶƨʌࣛ
࣢ İǫŗʚ ŗɼƨ ʚǫƨ ȕƨ˦ʌࣩɸʯƨɼǶƨʌࣩ˙ŗțʯƨʌ Ƕȳ ŗ ʌƨțǑ ŗʚʚƨȳʚǶɄȳ țŗ˦ƨɼ ɱɼɄƉƨʌʌǶȳǖ
ʌƨȳʚƨȳƉƨ

࣢ ÿǫƨ Ǒƨŗʚʯɼƨʌ ƉɄɼɼƨʌɱɄȳƕǶȳǖ ʚɄ ƨŗƉǫ ʚɄȕƨȳࣛ

ࢁࡹ

ÿɼŗȳʌǑɄɼȭƨɼʌ

ࢍࡹ

âɼƨʚɼŗǶȳǶȳǖ �ŗȳǖʯŗǖƨ ¡Ʉƕƨțʌ

࣢ ,ŗȳ ˝ƨ ʯʌƨ țŗɼǖƨ ŗȭɄʯȳʚʌ ɄǑ ʚƨ˥ʚ ƕŗʚŗ ʚɄ ɱɼƨʚɼŗǶȳ țŗȳǖʯŗǖƨ ȭɄƕƨțʌࣞ
࣢ ,ɄȳʌǶƕƨɼŗʚǶɄȳʌࣘ

! pɄ˝ Ɖŗȳ ˝ƨ Ǒʯʌƨ ſɄʚǫ țƨǒʚࣽɼǶǖǫʚ ŗȳƕ ɼǶǖǫʚࣽțƨǒʚ ƉɄȳʚƨ˥ʚࣞ
! pɄ˝ Ɖŗȳ ˝ƨ ǑŗƉǶțǶʚŗʚƨ ȳɄȳࣽʚɼǶ˙Ƕŗț ǶȳʚƨɼŗƉʚǶɄȳʌ ſƨʚ˝ƨƨȳ Ƕȳɱʯʚ ʚɄȕƨȳʌࣞ

࣢ âɼƨ˙ǶɄʯʌ ŗɱɱɼɄŗƉǫƨʌࣘ
! E�¡¶ ࣯âƨʚƨɼʌࣖ ƨʚࣖ ŗțࣖࣗ ࢑ࣱࣘࡹࡱࡽ $ǶƕǶɼƨƉʚǶɄȳŗțࣗ ſʯʚ ʌǫŗțțɄ˝ࣖ
! eâÿ ࣯éŗƕǑɄɼƕ ƨʚࣖ ŗțࣖࣗ ࣱࣘ࢕ࡹࡱࡽ 6ƨƨɱࣗ ſʯʚ ʯȳǶƕǶɼƨƉʚǶɄȳŗțࣖ
! $Eéÿ ࣯6ƨ˙țǶȳ ƨʚࣖ ŗțࣖࣗ ࣱࣘ࢕ࡹࡱࡽ 6ƨƨɱ ŗȳƕ ſǶƕǶɼƨƉʚǶɄȳŗțࣛ

ࡽࡽ

$Eéÿ İɄɼȕ̈Ʉ˝

࣢ ÿǫƨ $Eéÿ ˝Ʉɼȕ̈Ʉ˝ ǶȳƉțʯƕƨʌࣘ
! âɼƨʚɼŗǶȳ Ʉȳ ǖƨȳƨɼǶƉࣗ ʌƨțǑࣽʌʯɱƨɼ˙Ƕʌƨƕ ʚŗʌȕʌࣗ ʯʌǶȳǖ țŗɼǖƨ ŗȭɄʯȳʚʌ ɄǑ ƕŗʚŗ
࣯țǶȕƨ ŗțț ɄǑ İǶȕǶɱƨƕǶŗࣱ

! bǶȳƨࣽʚʯȳƨ Ʉȳ ʌɱƨƉǶ̇Ɖ ʚŗʌȕʌ ˝Ƕʚǫ țǶȭǶʚƨƕࣗ țŗſƨțțƨƕ ƕŗʚŗࣖ
࣢ ÿǫƨ ɱɼƨʚɼŗǶȳǶȳǖ ʚŗʌȕʌ ࣯˝Ƕțț ʚŗțȕ ŗſɄʯʚ ʚǫǶʌ Ƕȳ ȭɄɼƨ ƕƨʚŗǶț țŗʚƨɼࣱࣘ

! ¡ŗʌȕƨƕ �ŗȳǖʯŗǖƨ ¡ɄƕƨțțǶȳǖ ࣯ʚɄ țƨŗɼȳ ƉɄȳʚƨ˥ʚʯŗțǶ˲ƨƕ ʚɄȕƨȳ
ɼƨɱɼƨʌƨȳʚŗʚǶɄȳʌࣱ

! ¥ƨ˥ʚ óƨȳʚƨȳƉƨ âɼƨƕǶƉʚǶɄȳ ࣯ʌʯȭȭŗɼ˦ ˙ƨƉʚɄɼ ǑɄɼ ʚǫƨ ˝ǫɄțƨ Ƕȳɱʯʚࣱ

ࢁࡽ

Resources

ÿǫƨ ʚɼŗȳʌǑɄɼȭƨɼ ʌƨƉʚǶɄȳ ɄǑ ʚǫǶʌ ʚʯʚɄɼǶŗț Ƕʌ Ƕȳ̈ʯƨȳƉƨƕ ſ˦ ʚǫƨ ǑŗȳʚŗʌʚǶƉ ʚŗțȕ ſ˦
�ʯȕŗʌ˲ �ŗǶʌƨɼ Ʉȳ ʚɼŗȳʌǑɄɼȭƨɼʌࣘ
ǫʚʚɱʌࣩࣩࣘ ˝˝˝ࣖ˦ɄʯʚʯſƨࣖƉɄȭࣩ˝ŗʚƉǫࣞ˙ঋɼ$,ɸ¶ÿEǑ˥˙ǖʚঋࢅࡱ࢑ࡹʌ

Hugging Face and tutorial notebooks: https://huggingface.co/transformers/notebooks.html

The illustrated transformers series: http://jalammar.github.io/illustrated-bert/

ࢅࢁ

	References

