Recurrent Neural Networks (RNNs) and Transformers

CSC413H1S 2021 Tutorial 7

Haotian Cui

Based on the tutorials of CSC413 fall 2020

Recurrent Neural Networks (RNNs) 1/27

The Big Picture

Many domains feature sequences of data with temporal dependencies:
o Natural Language Processing (NLP)

@ Time series forecasting (Healthcare, Finance, etc.)

Common tasks:
@ Predict the next value in a sequence

@ Convert data sequence to equivalent sequence in another space
(translation)

@ Classify the entire sequence into specific class.

Recurrent Neural Networks (RNNs) 2/27

Related Methods

How do we model data which contains time dependency?

Autoregressive methods: Predict next data observation as a linear
equation of previously observed data points.

N

o) - ()) (o)

o Ex: zy = w1 vy 1 Fwoxxi_o+ ... + WK * 2K

@ Representational ability is limited. Only looks K steps back in time!

Recurrent Neural Networks (RNNs) 3/27

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) offer several advantages:
@ Non-linear hidden state updates allows high representational power.
e Can represent long term dependencies in hidden state (theoretically).

@ Shared weights, can be used on sequences of arbitrary length.

Recurrent Neural Networks (RNNs) 5/27

Recurrent Neural Networks

Output [01] [02] [03]
T Who T Who T Who

Hidden State [By]ﬂ,[hy]ﬂ,[hs]_> Wi,
T Win Win Win

Observed Data [X J [9] [z3 J

hy = Wiy, x¢ + Whp he—1 + bip, + bpp, (1)
a¢ = tanh(hy) (2)
ot = softmax(Wp, a¢ + bpo) (3)

Weight matrices are shared, meaning sequence can be arbitrary length.

Recurrent Neural Networks (RNNs) 6/27

Applications of RNN

Time Series

Classification
Class Label

0
Hidden N
(I A N N
Data Q Q Q O Q

Autoregressive Predicted Output

Prediction - O~ O

Hidden

Data

Recurrent Neural Networks (RNNs) 7/27

RNN Modifications: Bidirectional RNNs

Bidirectional RNNs (Schuster and Paliwal 1997)

-l. '. "
A e

Source: http://colah.github.io/posts/2015-09-NN-Types-FP/

Runs two separate RNN in opposite directions, and concatenate output.
@ Access to the future values can improve RNN representations.

@ Example: The

is a flightless bird that lives in Antarctica.

Recurrent Neural Networks (RNNs) 10 /27

http://colah.github.io/posts/2015-09-NN-Types-FP/

RNN Modifications: Stacked RNNs

Stacked RNNs
Output O O Q O O
R A N N
piadens | o] [of o | aneate
I N N N |

Pttt

I N N N |
bata O O O O O

Recurrent Neural Networks (RNNs)

ch Implementation

CLASS torch.nn.RNN(xazgs, **kwazgs) S0

Applies a multi-layer Elman RNN with tanh or ReL U non-linearity to an input sequence
For each element in the input sequence, each layer computes the following function:
ht = tanh(Wipas + bin + Whnhg 1) + bin)

where hy is the hidden state at time ¢, ¢ is the input at time t, and h(t 1) is the hidden state of the previous layer at
time ¢-1 or the initial hidden state at time o. If nonlinearity is 'relu’,then ReLU is used instead of tanh

Parameters

* input_size - The number of expected features in the input x

hidden_size - The number of features in the hidden state h

num_layers - Number of recurrent layers. E.g, setting num_layers=2 would mean stacking two RNNs
together to form a stacked RNN, with the second RNN taking in outputs of the first RNN and computing the

final results. Default: 1

nonlinearity - The non-linearity to use. Can be either 'tanh' or 'relu’.Default: 'tanh’

bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

batch_first - If True, then the input and output tensors are provided as (batch, seq, feature). Default:

False

dropout - If non-zero, introduces a Dropout layer on the outputs of each RNN layer except the last layer,

with dropout probability equal to dropout . Default: 0

* bi

irectional - If True, becomes a bidirectional RNN. Default: False

al Networks (RNNs)

Long Term Dependencies

Prediction tasks in time series often requires long term information from
observations ago.

Example: “The flamingo is a pink bird which lives in warmer regions of the
world, and they like to speak in run-on sentences for the sake of this
example. Surprisingly, are not naturally pink, but rather appear
pink because they are always embarrassed.”

Task: Fill in the blank. The RNN needs to store information about the
subject for an arbitrarily long length. Experiments show RNNs have a hard
time remembering.

Recurrent Neural Networks (RNNs) 14 /27

Gradient Issues

Consider: Deepest feed forward models contain up to ~ 150 layers, but
the type of sequential data used in RNNs can easily exceed this in length.
What happens to the gradient?

Some intuition:
@ Backprop is chain rule, i.e., recursive multiplication of many VJPs.
@ The derivative of the Tanh / Sigmoid activation is always less than 1.

@ Multiplying gradient with enough activation Jacobians will cause the
gradient will go to 0.

o Gradients can explode with ReLU activations (since its unbounded).

Hacky fixes: Gradient clipping to prevent explosion.

Recurrent Neural Networks (RNNs) 15 /27

LSTMs

Long Short-Term Memory (LSTM) units introduce long term cell state,
allowing gradients to flow without being forced to change.

@ Well, that description was unclear. Lets break it down!

The following figures are directly taken from Chris Olah’s blog:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

@ Avoiding citing each image to save space, but | claim no credit!

@ Side note: his blog contains many top tier tutorials, and is worth
checking out.

Recurrent Neural Networks (RNNs) 16 /27

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

RNN Diagram

Recurrent Neural Networks (RNNs)

LSTMs

LSTM Diagram

N N
2 ; >
@G>
A | bedstl| A
J >

Recurrent Neural Networks (RNNs)

LSTMs

Personally, | think of cell state as long-term memory. Protected by gates
(next slides) from unwanted gradient updates.

®
®

Recurrent Neural Networks (RNNs) 19 /27

LSTMs

Forget Gate: Deletes information from cell state.

fe=0Wy-[ht—1,2¢] + by)

@ Takes linear combination of x; and h;—1.
e Sigmoid activation squashes to range 0 (forget) to 1 (remember).

@ Output multiplied element-wise with cell state to forget certain pieces
of long term information (e.g., if the subject switches).

Recurrent Neural Networks (RNNs) 20/27

LSTMs

Input Gate: Adds information to cell state.

iv =0 (Wi-[he—1, 2] + b;)
Cy = tanh(Wo-[hy—1,24] + be)

@ First function determines which cell dimensions to update.
@ Second function determines what values to update cell state with.

@ Output of input gate is added to cell state.

Recurrent Neural Networks (RNNs) 21/27

LSTMs

Output Gate: Decides what information to output from cell state.

1

@an> O = O'(WO [ht_l,xt] + bo)

Ot 0
hia (0] hi = o0y * tanh (Cy)

hye
>

o Afterwards, hidden and cell states passed to next cell.

Recurrent Neural Networks (RNNs) 22/27

GRU

LSTMs are pretty complex, and require many weights.

Gated Recurrent Units (GRUs) (Cho et al. 2014) simplify LSTMs, and
should perform roughly as well.

2t = 0' Wz [ht 17$t]
re =0 (W, - [he—1,24])
h; = tanh (W - [re * hi—1,2¢])

hi—1 f

ht:(].—Zt)*ht_l—f—Zt*i’lt

Merge cell and hidden states, but keep the concept of gating updates to
hidden state.

Recurrent Neural Networks (RNNs) 24 /27

Conclusions

So do LSTMs actually solve the vanishing gradient problem? Kinda!

@ Many deployed real-world applications.
Powered Google Translate for many years.

@ Long term dependencies still challenging in reality.

G
4

SimpleRNN

|
|
|
|
|
|
|
|

2

i
|
|
i
]
|
i
i

i bl B il k) i i)

|
] b L2 mmi VT

Figure: Heatmap of gradient flow mapped out by depth.
Source: https://github.com/0verLordGoldDragon/see-rnn

Recurrent Neural Networks (RNNs) 25 /27

https://github.com/OverLordGoldDragon/see-rnn

References

@ Zhengping Che et al. “Recurrent neural networks for multivariate time series
with missing values”. In: Scientific reports 8.1 (2018), pp. 1-12.

@ Kyunghyun Cho et al. “Learning phrase representations using RNN
encoder-decoder for statistical machine translation”. In: arXiv preprint
arXiv:1406.1078 (2014).

@ Mike Schuster and Kuldip K Paliwal. “Bidirectional recurrent neural
networks”. In: IEEE transactions on Signal Processing 45.11 (1997),
pp. 2673-2681.

Recurrent Neural Networks (RNNs) 27 /27

We'd like an architectural primitive that is:

- |deally feed-forward
- Can facilitate between-token interactions
- Can model long dependences easily.

Attention to the rescue!

- There are many forms of attention. Today we'll focus on
scaled dot product attention.

Attention

- Similarity: Dot product between keys and queries.

- Interesting theorem: In high dimensions, two randomly sampled " vectors
are almost always approximately perpendicular to each other.
- Normalization: Softmax along the keys/values!
- Result: Scaled dot product attention.
- We get the following attention mechanism:
K'Q

A(Q,K,V) = V(softmax(d—m)) (2)

"From, lets say, a isotropic multivariate Gaussian distribution.

1

Attention

Scaled Dot-Product Attention

MatMul

It

SoftMax
Mask (opt.)
Scale

Q KV

1B

12

Self-Attention

- What is self-attention?
- Use the same tensor for keys, values and queries!

- What are the keys/queries/values in a self attention layer processing
sentence

- The features corresponding to each token!

13

Transformers

Qutput
Probabilities

Add & Norm
Feed
Forward
J

([Add & Norm J«~
Multi-Head

Add & Norm

Attention
Nx
Add & Norm
Add & Norm WAERen
Multi-Head Multi-Head
Attention Attention
A > A g
| \. —
Positional @_(Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs

(shifted right)

Pretraining Language Models

- Can we use large amounts of text data to pretrain language models?
- Considerations:

» How can we fuse both left-right and right-left context?
» How can we facilitate non-trivial interactions between input tokens?

- Previous approaches:
» ELMO (Peters. et. al,, 2017): Bidirectional, but shallow.

» GPT (Radford et. al,, 2018): Deep, but unidirectional.
» | BERT (Devlin et. al,, 2018): Deep and bidirectional!

22

BERT Workflow

- The BERT workflow includes:
» Pretrain on generic, self-supervised tasks, using large amounts of data
(like all of Wikipedia)
» Fine-tune on specific tasks with limited, labelled data.
- The pretraining tasks (will talk about this in more detail later):

» Masked Language Modelling (to learn contextualized token
representations)
» Next Sentence Prediction (summary vector for the whole input)

23

Resources

The transformer section of this tutorial is influenced by the fantastic talk by
Lukasz Kaiser on transformers:
https://www.youtube.com/watch?v=rBCqOTEfxvgt=1704s

Hugging Face and tutorial notebooks: https://huggingface.co/transformers/notebooks.html

The illustrated transformers series: http://jalammar.github.io/illustrated-bert/

34

	References

