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Machine Learning Meta-Challenges

» Increasing Model Complexity
More flexible models have more parameters.

» More Sophisticated Fitting Procedures
Non-convex optimization has many knobs to turn.

» Less Accessible to Non-Experts
Harder to apply complicated techniques.

» Results Are Less Reproducible
Too many important implementation details are missing.



Example: Deep Neural Networks

» Resurgent interest in large neural networks.

» When well-tuned, very successful for visual object
identification, speech recognition, comp bio, ...

» Big investments by Google, Facebook, Microsoft, etc.

» Many choices: number of layers, weight regularization,
layer size, which nonlinearity, batch size, learning rate
schedule, stopping conditions
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Search for Good Hyperparameters?

» Define an objective function.
Most often, we care about generalization performance.
Use cross validation to measure parameter quality.

» How do people currently search? Black magic.
Grid search
Random search
Grad student descent

» Painful!
Requires many training cycles.
Possibly noisy.




Can We Do Better? Bayesian Optimization

» Build a probabilistic model for the objective.
Include hierarchical structure about units, etc.

» Compute the posterior predictive distribution.
Integrate out all the possible true functions.
We use Gaussian process regression.

» Optimize a cheap proxy function instead.
The model is much cheaper than that true objective.

The main insight:
Make the proxy function exploit uncertainty to balance
exploration against exploitation.
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Today’s Topics

» Review of Gaussian process priors

» Bayesian optimization basics

» Managing covariances and kernel parameters
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Gaussian Processes as Function Models

Nonparametric prior on functions specified in
terms of a positive definite kernel.
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Gaussian Processes

» Gaussian process (GP) is a distribution on functions.

» Allows tractable Bayesian modeling of tfunctions
without specifying a particular finite basis.

» Input space (where we’re optimizing) X
» Model scalar functions f: X — R
» Positive definite covariance function C : X x X — R

» Mean function m: X = R



Gaussian Processes

Any finite set of N points in X, {z,}_, induces a
homologous N-dimensional Gaussian distribution
on RY taken to be the distribution on {y,, = f(z,)}.

n=1
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Gaussian Processes

» Due to Gaussian form, closed-form solutions for many
usetul questions about finite data.

» Marginal likelihood:

N 1 I e
Inp(y| X,0) = —Eln27r— §ln\K9\ — inKe Ly

» Predictive distribution at test points e Lt -
ytest 5 N(m, 2)

m = kTK9 Y E:ng—kgKe_lkg
» We compute these matrices from the covariance:

[Ke]n,n’ o C(wnamn’ : 9)
[kO]n,m = C(wna Lm , (9) [&H]m,m’ = C(wma Lm/ ; 9)



Examples of GP Covariances

Squared-Exponential | Matérn

Periodic
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GPs Provide Closed-Form Predictions
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Using Uncertainty in Optimization

» Find the minimum: z* = arg Hél)f(l f(x)

» We can evaluate the objective pointwise, but do not
have an easy functional form or gradients.

» After performing some evaluations, the GP gives us
easy closed-form marginal means and variances.

» Exploration: Seek places with high variance.
» Exploitation: Seek places with low mean.

» The acquisition function balances these for our proxy
optimization to determine the next evaluation.



Closed-Form Acquisition Functions

» The GP posterior gives a predictive mean function p(x)
and a predictive marginal variance function o°(z)

L f(xbest) o ,U(CE)
v () g

» Probability of Improvement (Kushner 1964):
api(z) = ®(y(z))
» Expected Improvement (Mockus 1978):
agi(z) = o(z)(7(2)@(v(z)) + N(v(z); 0,1))
» GP Upper Confidence Bound (Srinivas et al. 2010):
arce(z) = p(x) — ko(z)



Probability of Improvement
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GP Upper (Lower) Confidence Bound
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Distribution Over Minimum (Entropy Search)
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Why Doesn’t Everyone Use This?

These ideas have been around for decades.
Why is Bayesian optimization in broader use?

» Fragility and poor default choices.
Getting the function model wrong can be catastrophic.

» There hasn’t been standard software available.
[t’s a bit tricky to build such a system from scratch.

» Experiments are run sequentially.
We want to take advantage of cluster computing.

» Limited scalability in dimensions and evaluations.
We want to solve big problems.



Fragility and Poor Default Choices

Ironic Problem:
Bayesian optimization has its own hyperparameters!

» Covariance function selection
This turns out to be crucial to good performance.
The default choice for regression is way too smooth.
Instead: use adaptive Matern 3/5 kernel.

» Gaussian process hyperparameters
Typical empirical Bayes approach can fail horribly:.
Instead: use Markov chain Monte Carlo integration.
Slice sampling means no additional parameters!



Covariance Function Choice
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Choosing Covariance Functions

Structured SVM for Protein Motif Finding
Miller et al (2012)
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Snoek, Larochelle & RPA, NIPS 2012



MCMC for GP Hyperparameters

» Covariance hyperparameters are often optimized rather than
marginalized, typically in the name of convenience and efficiency.

» Slice sampling of hyperparameters (e.g., Murray and Adams 2010) is
comparably fast and easy, but accounts for uncertainty in length
scale, mean, and amplitude.

» Integrated Acquisition Function:

a(s) = / a(z; 8)p(8] {@n, yu}y) dO

K
1 k
~ i E a(x; 9 )) (k) ~ p(0 | {xnayn}fr]yzl)
k=1

» For a theoretical discussion of the implications of inferring

hyperparameters with BayesOpt, see recent work by Wang and de
Freitas (http://arxiv.org/abs/1406.7758)

Snoek, Larochelle & RPA, NIPS 2012


http://arxiv.org/abs/1406.7758

Integrating Out GP Hyperparameters

Posterior samples
with three different

length scales

Length scale specific
expected improvement

Integrated expected
improvement




MCMC for Hyperparameters

Logistic regression for handwritten digit recognition

Classification Error
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Gradient Based HO vs Bayesian Optimization
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Gradient Based HO vs Bayesian Optimization
Gradient Based HO Pros:

Can often tune as many hyperparameters as model parameters.

Can be done online -- i.e., we tune the hyperparameters and model
parameters jointly in one run.

But, need a differentiable validation objective and hyperparameter

Can behave strangely in some situations -- ex., short horizon bias [1]

[1 ] Wu, Yuhuai, et al. "Understanding short-horizon bias in stochastic meta-optimization." arXiv preprint arXiv:1803.02021 (2018).



Honorable Mention -- Graduate Student Descent

l.e., a person sitting there and tuning it.
Pros:
Can tune hyperparameters online with complicated schedules
Can save model and good checkpoints and try different methods.
Can use complicated intuitions about how the models should work
Can tune non-differentiable objectives (ex., accuracy) or even mixtures of objectives
Cab tune non-differentiable hyperparameters (ex., architecture)
Sometimes interpretable solutions
Can account for uncertainty
Can account for variable computational budgets

Transfer learning from other problems you’ve seen



Hyperparameter Optimization is bi-level optimization

These methods apply to bi-level optimization more generally
A* :=arg min £\ where (1)
A

How approximate w*? Lo = LuA,wN) and W'\ :=arg min LA, w)  (2)

ALy(A)  _ (aav 4 9Ly aw*)

oA oA ow OA
A,wW*(A)
hypergradient
hyperparam indirect grad. (3)
dLVOWR) "o VAW ) y AW
X oW A

hyperparam direct grad. parameter direct grad. best-response Jacobian



Kinds of Gradient Based HO A* ~ argmin Ly (A, Wg(A))
A

Amortized gradient / evolutionary methods -- [2], [3], others 0 =0p
df (6, 0%
Iterative differentiation (ITD) based methods -- [4], [5], others getl = ok + nk%
D
0% (9) = lim 65,

Approximate implicit differentiation (AID) methods -- [6], [7], others

Theorem 1 (Cauchy, Implicit Function Theorem). If
for some (X', w'), 63—€VL| x.w = 0 and regularity condi-
tions are satisfied, then surrounding (X', w') there is a
function w*(X) s.t. %—f—VT—| Aawey = 0 and we have:

| __ | 8%c X &Ly
oA 2\ - Owow OwOA 2\
Ny o’ N~ W

training Hessian training mixed partials

IFT
oy PO

ITD and AID based methods can easily scale to as many hyperparameters as model parameters.
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CIFAR-10 Distillation
Deer Dog

MNIST Distillation

Original Sample 1 Sample 2 Pixel Std.

- g
o

AAAS | & 5
‘ ' = ‘ > 0
.-ﬁ Figure 6. Optimized L2 regularization hyperparameters for each

Figure 7: Learned data augmentations. The original weight in a logistic regression trained on MNIST. The weights
wnagson-helelt, fellawed by hwo.angmented ramples corresponding to each output label (0 through 9 respectively) have
and the standard deviation of the pixel intensities from B o o

the augmentation distribution. been rendered separately. High values (black) indicate strong reg-

ularization.



We can overfit the validation set - careful!
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Think about validation partition?

Re-training is critical for performance

Without re-training With re-training
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Figure 9: Test accuracy of logistic regression on
MNIST, with different size validation splits. Solid lines
correspond to a single global weight decay (1 hyperpa-
rameter), while dotted lines correspond to a separate
weight decay per weight (many hyperparameters). The
best validation proportion for test performance is dif-
ferent after re-training for many hyperparameters, but
similar for few hyperparameters.



