
CSC�����Tutorial� �:� Policy�Gradient

by�)BPUJBO�$VJ

March� ��SE,�202�

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 1 / 58

#BTFE�PO�UIF�TMJEFT�CZ�4IFOH�+JB

Content

State and Action

Policy

Trajectory and how to sample it

Objective in Reinforcement Learning

Policy optimization by policy gradient ascent
Trajectory-based�Policy�Gradient�Derivation
(Log-derivative�trick.� Exploit�conditional� independence)
Break:� Apply�policy�gradient� for�playing�Dota2
Reducing�variance�of�policy�gradient�estimate�by�Baseline
(Var(x���y)�can�be�less�than�Var(x).�Expected�grad-log-prob�equal�0)

Implementing�Policy�Gradient� in�Pytorch

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 2 / 58

Problem Setup

State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 3 / 58

Problem Setup

State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.

State does not have to be the “physical location” of the agent.
E.g. st : how many ppl infected with covid19 today.

at : whether or not wash your hands now.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 4 / 58

Problem Setup

Agent’s Policy

“Agent” is an abstract concept, but we can formulate how the agent
behaves by, for example, a stochastic policy. This can be a
conditional distribution that is parameterized by ✓.

p✓(at |st) = ⇡✓ (at |st) = ⇡ (at |st ;✓)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 5 / 58

Problem Setup

Trajectory

Trajectory is nothing but a set of random variables, and its
distribution is a joint distribution over 2T + 1 r.v.:

⌧ = (s1, a1, s2, ..., sT , aT , sT+1)

p(⌧ ;✓) = p (s1, a1, s2, ..., sT , aT , sT+1;✓) = (?)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 8 / 58

Problem Setup

Trajectory

We can simplify using conditional independences from DAG:

(?) = ⇢0(s1)⇧
T
t=1⇡✓(at |st)p(st+1|st , at)

Remark: we will use p(⌧ ;✓) to denote that changing our policy
parameters ✓ induce a di↵erent trajectory distribution.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 9 / 58

Problem Setup

How to sample a trajectory (Run/Execute an agent)

“Running/Executing the agent in a environment” means ancestral
sampling from this DAG. (Sample the parent node and successively
sample the child nodes.)

s1 ⇠ ⇢0(s) at ⇠ ⇡✓(at |st) st+1 ⇠ p(st+1|st , at)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 10 / 58

Objective in Reinforcement Learning

Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

Return is the cumulative reward for the trajectory ⌧ . (Consider
finite-horzion undiscounted version in this tutorial)

R(⌧) =
TX

t=1

R(st , at)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 12 / 58

Objective in Reinforcement Learning

Expected Return

As R(⌧) is random, the objective is to maximize the expected return
E [R(⌧)] w.r.t ✓. By the law of the unconscious statistician, we can
write it as the expectation under ⌧ distribution p(⌧ ;✓):

J (✓) = E [R(⌧)] = E⌧⇠p(⌧ ;✓) [R(⌧)] = (?)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 14 / 58

Objective in Reinforcement Learning

Expected Return

As R(⌧) is random, the objective is to maximize the expected return
E [R(⌧)] w.r.t ✓. By the law of the unconscious statistician, we can
write it as the expectation under ⌧ distribution p(⌧ ;✓):

J (✓) = E [R(⌧)] = E⌧⇠p(⌧ ;✓) [R(⌧)] = (?)

And by the ancestral sampling, we can further simplify:

(?) = E
s1⇠⇢0(s)

at⇠⇡✓(at |st)
st+1⇠p(st+1|st ,at)

"
TX

t=1

R(st , at)

#

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 15 / 58

Policy Optimization by Policy Gradient Ascent

A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy ⇡✓k (at |st) to
⇡✓k+1(at |st) for maximizing J (✓) by gradient ascent:

✓k+1 = ✓k + ↵r✓J (✓)|✓k

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 16 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧)]

= r✓

Z
p(⌧ ;✓)R(⌧) d⌧

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 19 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧)]

= r✓

Z
p(⌧ ;✓)R(⌧) d⌧

=

Z
r✓p(⌧ ;✓)R(⌧) d⌧

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 20 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧)]

= r✓

Z
p(⌧ ;✓)R(⌧) d⌧

=

Z
r✓p(⌧ ;✓)R(⌧) d⌧

=

Z
p(⌧ ;✓)r✓ log p(⌧ ;✓)R(⌧) d⌧ * r✓ log p(⌧ ;✓) =

r✓p(⌧ ;✓)

p(⌧ ;✓)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 21 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧)]

= r✓

Z
p(⌧ ;✓)R(⌧) d⌧

=

Z
r✓p(⌧ ;✓)R(⌧) d⌧

=

Z
p(⌧ ;✓)r✓ log p(⌧ ;✓)R(⌧) d⌧ * r✓ log p(⌧ ;✓) =

r✓p(⌧ ;✓)

p(⌧ ;✓)

= E
⌧⇠p(⌧ ;✓)

[r✓ log p(⌧ ;✓)R(⌧)]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 22 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step2)

Step2 using conditional independences

E
⌧⇠p(⌧ ;✓)

[r✓ log p(⌧ ;✓)R(⌧)] Now use ancestral sampling

= E
s1⇠⇢0(s)

at⇠⇡✓(at |st)
st+1⇠p(st+1|st ,at)

2

664r✓ log
�
⇢0(s1)⇧

T
t=1⇡✓(at |st)p(st+1|st , at)

�
| {z }

1�

"
TX

t0=1

R(st0 , at0)

#
3

775

where 1� = r✓

log ⇢0(s1) +

TX

t=1

log ⇡✓(at |st) +
TX

t=1

log p(st+1|st , at)
!

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 24 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step2)

Step2 using conditional independences

E
⌧⇠p(⌧ ;✓)

[r✓ log p(⌧ ;✓)R(⌧)] Now use ancestral sampling

= E
s1⇠⇢0(s)

at⇠⇡✓(at |st)
st+1⇠p(st+1|st ,at)

2

664r✓ log
�
⇢0(s1)⇧

T
t=1⇡✓(at |st)p(st+1|st , at)

�
| {z }

1�

"
TX

t0=1

R(st0 , at0)

#
3

775

where 1� = r✓

log ⇢0(s1) +

TX

t=1

log ⇡✓(at |st) +
TX

t=1

log p(st+1|st , at)
!

=⇠⇠⇠⇠⇠:0
r✓⇢0(s1) +

TX

t=1

r✓ log ⇡✓(at |st) +
TX

t=1⇠⇠⇠⇠⇠⇠⇠⇠⇠:0

r✓ log p(st+1|st , at)

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 25 / 58

Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

r✓J (✓)|✓k = E
s1⇠⇢0(s)

at⇠⇡✓k
(at |st)

st+1⇠p(st+1|st ,at)

"
TX

t=1

r✓ log ⇡✓k (at |st)
"

TX

t0=1

R(st0 , at0)

##

⇡ 1

N

NX

i=1

"
TX

t=1

r✓ log ⇡✓k (a
(i)
t |s(i)t)

"
TX

t0=1

R(s(i)t0 , a
(i)
t0)

##

In practice, this gradient is estimated by executing the policy ⇡✓k in the
environment N times (N times ancestral sampling).

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 27 / 58

Break: Apply policy gradient for playing Dota2

Successful application of policy optimization by policy gradient

In Dota2, each team have five players controlling their unique agents.
Players gather golds by killing monsters and enemies to buy items.
The final objective is destroy an enemy structure called Ancient.
OpenAI agents recently won against the best team in the world. [1]

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 29 / 58

Break: Apply policy gradient for playing Dota2

Observation (Input of the policy)

State S: 16000-dimensional vector with information such as the
distances to the observed enemies. But it is partially observable
because teams don’t see the map far from the current locations even
if they went there before. LSTM is used to memorize previous states.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 30 / 58

Break: Apply policy gradient for playing Dota2

Action (Output of the policy)

Action A: Continuous, but discretized into 8000-80000 actions.

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 31 / 58

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B(s) from the policy gradient
This can reduce variance, without changing expectation

E⇡✓ [r✓ log ⇡✓(s, a)B(s)] =
X

s2S
d⇡✓(s)

X

a

r✓⇡✓(s, a)B(s)

=
X

s2S
d⇡✓B(s)r✓

X

a2A
⇡✓(s, a)

= 0

A good baseline is the state value function B(s) = V ⇡✓(s)
So we can rewrite the policy gradient using the advantage
function A⇡✓(s, a)

A⇡✓(s, a) = Q⇡✓(s, a) � V ⇡✓(s)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a) A
⇡✓(s, a)]

Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (1)

The advantage function can significantly reduce variance of
policy gradient

So the critic should really estimate the advantage function

For example, by estimating both V ⇡✓(s) and Q⇡✓(s, a)

Using two function approximators and two parameter vectors,

Vv (s) ⇡ V ⇡✓(s)

Qw (s, a) ⇡ Q⇡✓(s, a)

A(s, a) = Qw (s, a) � Vv (s)

And updating both value functions by e.g. TD learning

Reference

Christopher Berner et al. “Dota 2 with Large Scale Deep
Reinforcement Learning”. In: arXiv preprint arXiv:1912.06680 (2019).

by Sheng Jia CSC413 Tutorial11: Policy Gradient March 31st, 2020 58 / 58

	References

