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Problem Setup

State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.
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Problem Setup

State

State s is the complete description of the task/environment from which
the agent can make decisions for taking actions and receive rewards. Both

state and action are indexed by the timestep as st , at during the
agent-environment interaction.

State does not have to be the “physical location” of the agent.
E.g. st : how many ppl infected with covid19 today.

at : whether or not wash your hands now.
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Problem Setup

Agent’s Policy

“Agent” is an abstract concept, but we can formulate how the agent
behaves by, for example, a stochastic policy. This can be a
conditional distribution that is parameterized by ✓.

p✓(at |st) = ⇡✓ (at |st) = ⇡ (at |st ;✓)
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Problem Setup

Trajectory

Trajectory is nothing but a set of random variables, and its
distribution is a joint distribution over 2T + 1 r.v.:

⌧ = (s1, a1, s2, ..., sT , aT , sT+1)

p(⌧ ;✓) = p (s1, a1, s2, ..., sT , aT , sT+1;✓) = (?)
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Problem Setup

Trajectory

We can simplify using conditional independences from DAG:

(?) = ⇢0(s1)⇧
T
t=1⇡✓(at |st)p(st+1|st , at)

Remark: we will use p(⌧ ;✓) to denote that changing our policy
parameters ✓ induce a di↵erent trajectory distribution.
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Problem Setup

How to sample a trajectory (Run/Execute an agent)

“Running/Executing the agent in a environment” means ancestral
sampling from this DAG. (Sample the parent node and successively
sample the child nodes.)

s1 ⇠ ⇢0(s) at ⇠ ⇡✓(at |st) st+1 ⇠ p(st+1|st , at)
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Objective in Reinforcement Learning

Reward, Return

Consider reward rt = R(st , at) as something that measures how well
action at is in state st . This is computed by a blackbox function
R(st , at) from the environment.

Return is the cumulative reward for the trajectory ⌧ . (Consider
finite-horzion undiscounted version in this tutorial)

R(⌧) =
TX

t=1

R(st , at)
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Objective in Reinforcement Learning

Expected Return

As R(⌧) is random, the objective is to maximize the expected return
E [R(⌧)] w.r.t ✓. By the law of the unconscious statistician, we can
write it as the expectation under ⌧ distribution p(⌧ ;✓):

J (✓) = E [R(⌧ )] = E⌧⇠p(⌧ ;✓) [R(⌧ )] = (?)
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Objective in Reinforcement Learning

Expected Return

As R(⌧) is random, the objective is to maximize the expected return
E [R(⌧)] w.r.t ✓. By the law of the unconscious statistician, we can
write it as the expectation under ⌧ distribution p(⌧ ;✓):

J (✓) = E [R(⌧ )] = E⌧⇠p(⌧ ;✓) [R(⌧ )] = (?)

And by the ancestral sampling, we can further simplify:

(?) = E
s1⇠⇢0(s)

at⇠⇡✓(at |st)
st+1⇠p(st+1|st ,at)

"
TX

t=1

R(st , at)

#
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Policy Optimization by Policy Gradient Ascent

A method to “skill up” the agent

Policy Optimization by Policy Gradient Ascent

We can make a one-step optimization for the current policy ⇡✓k (at |st) to
⇡✓k+1(at |st) for maximizing J (✓) by gradient ascent:

✓k+1 = ✓k + ↵r✓J (✓)|✓k
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧ )]

= r✓

Z
p(⌧ ;✓)R(⌧ ) d⌧
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧ )]

= r✓

Z
p(⌧ ;✓)R(⌧ ) d⌧

=

Z
r✓p(⌧ ;✓)R(⌧ ) d⌧
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧ )]

= r✓

Z
p(⌧ ;✓)R(⌧ ) d⌧

=

Z
r✓p(⌧ ;✓)R(⌧ ) d⌧

=

Z
p(⌧ ;✓)r✓ log p(⌧ ;✓)R(⌧ ) d⌧ * r✓ log p(⌧ ;✓) =

r✓p(⌧ ;✓)

p(⌧ ;✓)
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step1)

Step1 using log-derivative trick

r✓J (✓) = r✓ E
⌧⇠p(⌧ ;✓)

[R(⌧ )]

= r✓

Z
p(⌧ ;✓)R(⌧ ) d⌧

=

Z
r✓p(⌧ ;✓)R(⌧ ) d⌧

=

Z
p(⌧ ;✓)r✓ log p(⌧ ;✓)R(⌧ ) d⌧ * r✓ log p(⌧ ;✓) =

r✓p(⌧ ;✓)

p(⌧ ;✓)

= E
⌧⇠p(⌧ ;✓)

[r✓ log p(⌧ ;✓)R(⌧ )]
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step2)

Step2 using conditional independences

E
⌧⇠p(⌧ ;✓)

[r✓ log p(⌧ ;✓)R(⌧ )] Now use ancestral sampling

= E
s1⇠⇢0(s)

at⇠⇡✓(at |st)
st+1⇠p(st+1|st ,at)

2

664r✓ log
�
⇢0(s1)⇧

T
t=1⇡✓(at |st)p(st+1|st , at)

�
| {z }

1�

"
TX

t0=1

R(st0 , at0)

#
3

775

where 1� = r✓

 
log ⇢0(s1) +

TX

t=1

log ⇡✓(at |st) +
TX

t=1

log p(st+1|st , at)
!
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Step2)

Step2 using conditional independences

E
⌧⇠p(⌧ ;✓)

[r✓ log p(⌧ ;✓)R(⌧ )] Now use ancestral sampling

= E
s1⇠⇢0(s)

at⇠⇡✓(at |st)
st+1⇠p(st+1|st ,at)

2

664r✓ log
�
⇢0(s1)⇧

T
t=1⇡✓(at |st)p(st+1|st , at)

�
| {z }

1�

"
TX

t0=1

R(st0 , at0)

#
3

775

where 1� = r✓

 
log ⇢0(s1) +

TX

t=1

log ⇡✓(at |st) +
TX

t=1

log p(st+1|st , at)
!

=⇠⇠⇠⇠⇠:0
r✓⇢0(s1) +

TX

t=1

r✓ log ⇡✓(at |st) +
TX

t=1⇠⇠⇠⇠⇠⇠⇠⇠⇠:0

r✓ log p(st+1|st , at)
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Policy Optimization by Policy Gradient Ascent

Deriving policy gradient (Final form)

Hence, the policy gradient w.r.t the current policy parameters is:

r✓J (✓)|✓k = E
s1⇠⇢0(s)

at⇠⇡✓k
(at |st)

st+1⇠p(st+1|st ,at)

"
TX

t=1

r✓ log ⇡✓k (at |st)
"

TX

t0=1

R(st0 , at0)

##

⇡ 1

N

NX

i=1

"
TX

t=1

r✓ log ⇡✓k (a
(i)
t |s(i)t )

"
TX

t0=1

R(s(i)t0 , a
(i)
t0 )

##

In practice, this gradient is estimated by executing the policy ⇡✓k in the
environment N times (N times ancestral sampling).
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Break: Apply policy gradient for playing Dota2

Successful application of policy optimization by policy gradient

In Dota2, each team have five players controlling their unique agents.
Players gather golds by killing monsters and enemies to buy items.
The final objective is destroy an enemy structure called Ancient.
OpenAI agents recently won against the best team in the world. [1]
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Break: Apply policy gradient for playing Dota2

Observation (Input of the policy)

State S: 16000-dimensional vector with information such as the
distances to the observed enemies. But it is partially observable
because teams don’t see the map far from the current locations even
if they went there before. LSTM is used to memorize previous states.
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Break: Apply policy gradient for playing Dota2

Action (Output of the policy)

Action A: Continuous, but discretized into 8000-80000 actions.
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Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Advantage Function Critic

Reducing Variance Using a Baseline

We subtract a baseline function B(s) from the policy gradient
This can reduce variance, without changing expectation

E⇡✓ [r✓ log ⇡✓(s, a)B(s)] =
X

s2S
d⇡✓(s)

X

a

r✓⇡✓(s, a)B(s)

=
X

s2S
d⇡✓B(s)r✓

X

a2A
⇡✓(s, a)

= 0

A good baseline is the state value function B(s) = V ⇡✓(s)
So we can rewrite the policy gradient using the advantage
function A⇡✓(s, a)

A⇡✓(s, a) = Q⇡✓(s, a) � V ⇡✓(s)

r✓J(✓) = E⇡✓ [r✓ log ⇡✓(s, a) A
⇡✓(s, a)]



Lecture 7: Policy Gradient

Actor-Critic Policy Gradient

Advantage Function Critic

Estimating the Advantage Function (1)

The advantage function can significantly reduce variance of
policy gradient

So the critic should really estimate the advantage function

For example, by estimating both V ⇡✓(s) and Q⇡✓(s, a)

Using two function approximators and two parameter vectors,

Vv (s) ⇡ V ⇡✓(s)

Qw (s, a) ⇡ Q⇡✓(s, a)

A(s, a) = Qw (s, a) � Vv (s)

And updating both value functions by e.g. TD learning
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